
Abstract PDF ENG . .PDF RUS | Full text PDF RUS |
Abstract. Some aspects of the self-oscillation of microseismic sources represented by the Selkov mathematical model for glycolysis were reviewed. The paper clarifies some of the conclusions made in a previously published article in the journal "Geosystems of Transition Zones." In particular, it was shown that the dynamic system that models microseisms has only one equilibrium state, the location of which in a bounded part of the phase plane varies depending on the values of the parameter characterizing the fracture concentration. It was proved that the system has a simple unstable node or focus surrounded by at least one stable limit cycle.
Keywords:
microseisms, Selkov model, auto-oscillation, Poincare's disk, equilibrium state, crack concentration axis
For citation: Tlachev V.B., Ushkho D.S. On the trajectories of the Selkov dynamic system describing the self-oscillation of microseism sources. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 1, pp. 66–72. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2025.9.1.066-072, https://www.elibrary.ru/xuvcpw
Для цитирования: Тлячев В.Б., Ушхо Д.С. О траекториях динамической системы Селькова, описывающей автоколебания источников микросейсм. Геосистемы переходных зон, 2025, т. 9, № 1, с. 66–72.
https://doi.org/10.30730/gtrz.2025.9.1.066-072, https://www.elibrary.ru/xuvcpw
References
1. Makovetsky V.I., Dudchenko I.P., Zakupin A.S. 2017. Autooscillation model of microseism’s sources. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 1(4): 37–46. (In Russ.). https://doi.org/10.30730/2541-8912.2017.1.4.037-046
2. Selkov E.E. 1967. [On the possibility of self-oscillations in enzyme reactions with substrate and productive repression]. In: [Oscillatory processes in biological and chemical systems: Proceedings of the All-Union symposium on oscillatory processes in biological chemical systems], Pushchino-na-Oke, March 21–26, 1966. Moscow: Nauka, p. 93?112. (In Russ.).
3. Andronov A.A., Leontovich E.A., Gordon I.I., Maier A.L. 1973. Qualitative theory of second-order dynamic systems. New York, Toronto: John-Wiley, 548 p. (In Engl., Russ.). URL: https://archive.org/details/qualitativetheor0000unse/page/n9/mode/2up (accessed 28.11.2024).
4. Frommer М. 1928. Die Integralkurven einer gewohnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen. Mathematische Annalen, 99(1): 222–272. https://doi.org/10.1007/978-3-662-41390-6
5. Bautin N.N., Leontovich E.A. 1976. [Methods and techniques for qualitative research of dynamical systems on a plane]. Moscow: Nauka, 496 p. (In Russ.).
6. Amelkin V.V., Lukashevich N.A., Sadovsky A.P. 1982. [Nonlinear oscillations in second-order systems]. Minsk: Publ. house of the BSU, 208 p. (In Russ.).
7. Lashina E.A., Chumakov G.A., Chumakova N.A. 2005. Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction. Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 5(4): 42–59. (In Russ.). URL: https://www.mathnet.ru/rus/vngu219 (accessed 13.02.2025).
8. Chumakov G.A. 2007 . Dynamics of a system of nonlinear differential equations. Siberian Mathematical Journal, 48(5): 949–960. https://doi.org/10.1007/s11202-007-0098-x
9. Potapov V.I. 2011. On bifurcations in dynamical Slinko-Chumakov system. Bulletin of the Nizhny Novgorod Lobachevsky University, 2(1): 146–155. (In Russ.).
10. Mukherjee S., Basu A. 2022. Statistical mechanics of phase transitions in elastic media with vanishing thermal expansion. Physical Review E, 106, 054128. https://doi.org/10.1103/PhysRevE.106.054128
11. Tlachev V.B., Ushkho D.S. 2024. The behavior of dynamical system solutions modeling a flat elastic medium in the framework of the Ginzburg–Landau theory. Works of the Adygheya Republic Physical Society, 29: 20–25. (In Russ.). URL: https://trudy.fora01.ru/files/344/3-2024.pdf (accessed 13.02.2025).