
Abstract PDF ENG. .PDF RUS | Full text PDF ENG. .PDF RUS |
Abstract. The aim of the paper was to study the problem of waves in a layer of incompressible fluid of constant depth. The interest in the problem arose due to the excitation and propagation of surface waves in the Pacific Ocean as a result of the powerful explosive eruption of the Hunga Tonga–Hunga Haapai volcano on January 15, 2022. Potential fluid motions were considered. The disturbances were induced in the form of a short-term pressure pulse above the free surface and in the form of pressure waves arising due to of the disintegration of the initial region of high pressure in the atmosphere (Lamb waves). Solutions were obtained for forced and free waves on the surface, as well as for forced and free pressure waves at the bottom of the fluid layer. In the long-wave approximation, the amplitudes of free surface waves and the amplitudes of free bottom pressure waves (in meters of water column) coincide, while the amplitudes of forced bottom pressure waves are greater than the amplitudes of forced surface waves. In cases where only the forced component is present in the pressure record, the use of a correction factor gives an adequate result for surface waves. If both components (forced and free) are present in the record, the use of the correction factor is unjustified, since it is impossible to separate the components. The estimation of surface wave amplitudes based on bottom pressure data may yield inadequate results. The results obtained are discussed in connection with the operational tsunami forecast based on the data from bottom sea level measurement stations. A proposal is formulated on a possible method for adequately estimating the amplitude of surface waves when excited by a moving region of variable pressure.
Keywords:
water waves, Lamb waves, forced waves, baric waves, free waves, gravity waves, tsunami, sea level measurements, operational tsunami forecast, tsunami warning services, Pacific Ocean
For citation: Korolev Yu.P. Waves in a fluid layer excited by pressure variations above the free surface. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, 11 p.
https://doi.org/10.30730/gtrz.2025.0.wif-2, https://elibrary.ru/loobm, http://journal.imgg.ru/web/full/f-e2025-0-2.pdf
Для цитирования: Королёв Ю.П. Волны в слое жидкости, возбуждаемые вариациями давления над свободной поверхностью. Геосистемы переходных зон, 2025, 11 с.
https://doi.org/10.30730/gtrz.2025.0.wif-2, https://elibrary.ru/loobm, http://journal.imgg.ru/web/full/f2025-0-2.pdf
References
1. Terry J.P., Goff J., Winspear N., Bongolan V.P., Fisher S. 2022. Tonga volcanic eruption and tsunami, January 2022: globally the most significant opportunity to observe an explosive and tsunamigenic submarine eruption since AD 1883 Krakatau. Geoscience Letters, 9(24). https://doi.org/10.1186/s40562-022-00232-z
2. Solovieva M.S., Padokhinb A.M., Shalimov S.L. 2022. Mega-eruption of the Hunga Volcano on January 15, 2022: Detection of ionospheric perturbations by VLF and GNSS radio sounding. JETP Letters, 116(11): 846–851.
3. Amores A., Monserrat S., Marcos M., Argueso D., Villalonga J., Jorda G., Gomis D. 2022 . Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga–Tonga volcanic eruption. Geophysical Research Letters, 49, e2022GL098240. https://doi.org/10.1029/2022GL098240
4. Kubota T., Saito T., Nishida K. 2022 . Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption. Science, 377(6601): 91–94. https://doi.org/10.1126/science.abo4364
5. Matoza R.S., Fee D., Assink J.D., Iezzi A.M., Green D.N., Kim K., Toney L., Lecocq T., Krishnamoorthy S., Lalande J.-M. et al. 2022 . Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science , 377(6601): 95–100. https://doi.org/10.1126/science.abo7063
6. Nosov M.A., Kolesov S.V., Sementsov K.A. 2023 . Interpretation of signals recorded by ocean-bottom pressure gauges during the passage of atmospheric lamb wave on 15 January 2022. Remote Sensing, 15(12), 3071. https://doi.org/10.3390/rs15123071
7. Gusman A.R., Roger J., Noble C., Wang X., Power W., Burbidge D. 2022 . The 2022 Hunga Tonga–Hunga Ha’apai volcano air-wave generated tsunami. Pure and Applied Geophysics, 179: 3511–3525. https://doi.org/10.1007/s00024-022-03154-1
8. Landau L.D., Lifshitz E.M. 1987 . Course of theoretical physics. Vol. 6. 2nd Engl. ed. Fluid mechanics. Pergamon Press. (Translation from the Russian).
9. Purkis S.J., Ward S.N., Fitzpatrick N.M., Garvin J.B., Slayback D., Cronin S.J., Palaseanu-Lovejoy M., Dempsey A. 2023 . The 2022 Hunga-Tonga megatsunami: Near-field simulation of a once-in-a-century event. Science Advances , 9(15). https://doi.org/10.1126/sciadv.adf5493
10. Shrivastava M.N., Sunil A.S., Maurya A.K., Aguilera F., Orrego S., Sunil P.S., Cienfuegos R., Moreno M. 2023. Tracking tsunami propagation and Island’s collapse after the Hunga Tonga Hunga Ha’apai 2022 volcanic eruption from multi space observations. Scientific Reports , 20109. https://doi.org/10.1038/s41598-023-46397-1
11. Nosov M.A., Sementsov K.A., Kolesov S.V., Pryadun V.V. 2022 . Atmospheric Lamb wave manifestation in bottom pressure variatbons. Moscow University Physics Bulletin , 77(6): 896–904.
12. Miyashita T., Nishino A., Ho T.-C., Yasuda T., Mori N., Shimura T., Fukui N. 2023. Multi-scale simulation of subsequent tsunami waves in Japan excited by air pressure waves due to the 2022 Tonga volcanic eruption. Pure and Applied Geophysics, 180: 3195–3223. https://doi.org/10.1007/s00024-023-03332-9
13. Tanioka Y., Yamanaka Y., Nakagaki T. 2022. Characteristics of the deep sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption. Earth, Planets and Space, 74(61). https://doi.org/10.1186/s40623-022-01614-5
14. Kubo H., Kubota T., Suzuki W., Aoi S., Sandanbata O., Chikasada N., Ueda H. 2022. Ocean-wave phenomenon around Japan due to the 2022 Tonga eruption observed by the wide and dense ocean bottom pressure gauge networks. Earth, Planets and Space, 74(104). https://doi.org/10.1186/s40623-022-01663-w
15. Omira R., Ramalho R.S., Kim J., Gonzalez P.J., Kadri U., Miranda J.M., Carrilho F., Baptista M.A. 2022. Global Tonga tsunami explained by a fast-moving atmospheric source. Nature, 609: 734–740. https://doi.org/10.1038/s41586-022-04926-4
16. Fujii Y., Satake K. 2024. Modeling the 2022 Tonga eruption tsunami recorded on ocean bottom pressure and tide gauges around the Pacific. Pure and Applied Geophysics, 181: 1793–1809. https://doi.org/10.1007/s00024-024-03477-1
17. Ren Z., Higuera P., Liu P.L.-F. 2023. On tsunami waves induced by atmospheric pressure shock waves after the 2022 Hunga Tonga–Hunga Ha'apai volcano eruption. Journal of Geophysical Research: Oceans, 128, e2022JC019166. https://doi.org/10.1029/2022JC019166
18. Heidarzadeh M., Gusman A.R., Ishibe T., Sabeti R., Sepic J. 2022. Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modeling. Ocean Engineering, 261(112165). https://doi.org/10.1016/j.oceaneng.2022.112165
19. Hu G., Li L., Ren Z., Zhang K. 2023. The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean. Natural Hazards and Earth System Sciences, 23(2): 675–691. https://doi.org/10.5194/nhess-23-675-2023
20. Proudman J. 1929. The effects on the sea of changes in atmospheric pressure. Geophysical Journal International, 2: 197–209. https://doi.org/10.1111/j.1365-246X.1929.tb05408.x
21. Monserrat S., Vilibic I., Rabinovich A.B. 2006 . Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6(6): 1035–1051. https://doi.org/10.5194/nhess-6-1035-2006
22. Saito T., Kubota T., Chikasada N. Y., Tanaka Y., Sandanbata O. 2021 . Meteorological tsunami generation due to sea-surface pressure change: Threedimensional theory and synthetics of ocean-bottom pressure change. Journal of Geophysical Research: Oceans, 126, e2020JC017011. https://doi.org/10.1029/2020JC017011
23. Liu P.L.-F., Higuera P. 2022 . Water waves generated by moving atmospheric pressure: Theoretical analyses with applications to the 2022 Tonga event. Journal of Fluid Mechanics, 951(A34). https://doi.org/10.1017/jfm.2022.840
24. Korolev Yu.P. 2011 . An approximate method of short-term tsunami forecast and the hindcasting of some recent events. Natural Hazards and Earth System Sciences, 11(11): 3081–3091. https://doi.org/10.5194/nhess-11-3081-2011
25. Lavrent’ev M.A., Shabat B.V. 1973 . [ Methods of complex variable theory ]. Moscow: Nauka, 736 p. (In Russ.).
26. Stoker J.J. 1957 . Water waves. New York, London: Interscience Publ. https://doi.org/10.1002/9781118033159
27. Korolev Yu.P., Korolev P.Yu. 2025 . Assessment of the tsunami in the Pacific Ocean caused by the explosion of the Hunga Tonga–Hunga Ha'apai volcano on January 15, 2022, using the express method of operational forecasting. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 9(1): 56–65. https://doi.org/10.30730/gtrz.2025.9.1.056-065; https://www.elibrary.ru/kktwzl