Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2023, vol. 7, no. 2, pp. 115–131

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2023.7.2.115-131, https://www.elibrary.ru/bogdqg, http://journal.imgg.ru/web/full/f-e2023-2-1.pdf


Observations of the inverse seismoelectric effect of the second kind during electrical sounding in the Central Sakhalin fault zone
1* Leonid M. Bogomolov, https://orcid.org/0000-0002-9124-9797, bleom@mail.ru
2,1 Dmitry V. Kostylev, https://orcid.org/0000-0002-8150-9575, d.kostylev@imgg.ru
1 Natalya V. Kostyleva, https://orcid.org/0000-0002-3126-5138, n.kostyleva@imgg.ru
1 Sergey A. Gulyakov, https://orcid.org/0009-0001-7924-6972, gulyakov_97@mail.ru
1 Ilya P. Dudchenko, https://orcid.org/0000-0002-4967-7405, ilpadu@mail.ru
1 Pavel A. Kamenev, https://orcid.org/0000-0002-9934-5855, kamepav@mail.ru
1 Nikolay S. Stovbun, https://orcid.org/0009-0004-1927-798X, nikolay19972016@gmail.com
1Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
2Sakhalin Branch of the Federal Research Center of Geophysical Survey of RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS/PDF ENG

Abstract. The results of experiments on electrical sounding of the near-surface layer of the Earth's crust in the fault zone, which have involved a recording of seismoacoustic and seismic noise in the close zone near the source (the primary dipole source), are represented. The experiments were carried out in 2021–2022 in the southern part of the Central Sakhalin fault with the use of the generator of electric pulses developed at IMGG FEB RAS, output electric power being up to 3 kW. The aim was to reveal seismoacoustic signatures of the medium reaction to the soundings with current pulses of 5–13 A. The generator provided significantly higher current in the dipole than its typical characteristics in the case of soundings for electrical exploration by resistance methods, as well as in the case of conventional seismic and electrical exploration. At the same time, the range of current amplitudes was much smaller in comparison with the case of a deep sounding based on application of geophysical MHD generators or other extra high-power electric pulses units. Up to now, the inverse seismoelectric effect has remained practically unexplored at currents in the “intermediate” range of ~10 A and scale lengths of the order of few hundreds of meters. The presence or absence of the medium reaction to electrical soundings was distinguished by the records of molecular-electronic sensors developed by R-sensors LLC: the CME-6111 broadband seismometer and the hydrophone, installed at a distance of about 50 m from one of the poles of the electric dipole source. An increase in the average level of seismoacoustic noise during electrical soundings was revealed, which is essentially a variety of the inverse seismoelectric effect of the second kind (excitation of elastic waves during an electric current run in a two-phase medium). Previously, no similar signature of medium reaction to the current pulses was noted in the close zone adjacent to one of the dipole electrodes. The noise level increase occurs almost without delay after the start of electrical soundings, and this is in accordance with the previously obtained results on the responses of seismic acoustic emission to powerful current pulses, which were used for a deep sounding in the Northern Tien Shan.


Keywords:
electrical sounding, seismic noise, medium seismoacoustic reaction, seismoelectric effect

For citation: Bogomolov L.M., Kostylev D.V., Kostyleva N.V., Gulyakov S.A., Dudchenko I.P., Kamenev P.A., Stovbun N.S. Observations of the inverse seismoelectric effect of the second kind during electrical sounding in the Central Sakhalin fault zone. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2023, vol. 7, no. 2, 14 p. (In Engl.).
https://doi.org/10.30730/gtrz.2023.7.2.115-131, http://journal.imgg.ru/web/full/f-e2023-2-1.pdf


References

1. Cherdyncev S.N. 2022. The seismoelectric effect is the basis of a new geophysical method of oil well research – seismoelectric logging. Advances in Current Natural Sciences, 11: 143–150. (In Russ.). https://doi.org/10.17513/use.37942

2. Ivanov A.G. 1940. Seismoelectric effect of the 1st kind in near-electrode regions. Transactions (Doklady) of the USSR Academy of Sciences, 68: 53–56. (In Russ.).

3. Ivanov A.G. 1940. Seismoelectric effect of the 2nd kind. Izvestiya AN SSSR. Seriya geograficheskaya i geofizicheskaya, 5: 699–727. (In Russ.).

4. Frenkel' Ya.I. 1944. On the theory of seismic and seismoelectric phenomena in moist soil. Izvestiya AN SSSR. Seriya geograficheskaya i geofizicheskaya, 8(4): 134–149. (In Russ.).

5. Biot M.A. 1956. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of the Acoustical Society of America, 28(2): 168–178. https://doi.org/10.1121/1.1908239

6. Pride S.R. 1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B, 50(21): 15678–15696. https://doi.org/10.1103/physrevb.50.15678

7. Haartsen M.W., Pride S.R. 1996. Electroseismic waves from point sources in layered media. J. of Geophysical Research: Solid Earth, 102(B11): 24745–24769. https://doi.org/10.1029/97jb02936

8. Svetov B.S. 2008. Fundamentals of geoelectrics. Leningrad: Izdatel'stvo LKI, 656 p. (In Russ.).

9. Adushkin V.V., Spivak A.A. 2014. Physical fields in near-surface geophysics. Moscow: GEOS, 360 p. (In Russ.).

10. Adushkin V.V., Ovchinnikov V.M., Sanina I.A., Riznichenko O.Yu. 2016. Mikhnevo: from seismic station no. 1 to a modern geophysical observatory. Izv., Physics of the Solid Earth, 52(1): 105–116. https://doi.org/10.1134/s1069351315060014

11. Spivak A.A., Kishkina S.B. 2004. The use of microseismic background for the identification of active geotectonic structures and determination of geodynamic characteristics. Izv., Physics of the Solid Earth, 40(7): 573–586.

12. Tarasov N.T. 1997. Variation of seismicity of the Earth crust by electric impact. Doklady Rossiiskoi akademii nauk [Transactions (Doklady) of the Russian Academy of Sciences. Earth Science Sections ], 353(4): 542–545. (In Russ.).

13. Tarasov N.T., Tarasova N.V., Avagimov A.A., Zeigarnik V.A. 2000. The effect of high energy electromagnetic pulses on seismicity in Central Asia and Kazakhstan. Volcanology and Seismology, 21(4-5): 627–639.

14. Avagimov A.A., Zejgarnik V.A., Fajnberg E.B. 2005. Electromagnetically induced spatial-temporal structure of seismicity. Izv., Physics of the Solid Earth, 41(6): 475–484.

15. Smirnov V.B., Zavyalov A.D. 2012. Seismic response to electromagnetic sounding of the Earth's lithosphere. Izv., Physics Solid Earth, 48: 615–639. https://doi.org/10.1134/S1069351312070075

16. Sychev V.N., Bogomolov L.M., Rybin A.K., Sycheva N.A. 2010. Influence of electromagnetic sounding of the Earth's crust on the seismic regime of the territory of the Bishkek geodynamic test site. In: Adushkin V.V., Kocharyan G.G. (eds) Trigger effects in geosystems: Proceedings of the All-Russian seminar-meeting. Moscow: GEOS, p. 316–325. (In Russ.).

17. Sobolev G.A., Ponomarev A.V. 2003. Earthquake physics and precursors. Moscow: Nauka, 270 p. (In Russ.).

18. Bogomolov L.M., Il'ichev P.V., Sychev V.N., Zakupin A.S., Novikov V.A., Okunev V.I. 2004. Acoustic emission response of rocks to electric power action as seismic-electric effect manifestation. Annals of Geophysics, 47(1): 65–72. https://doi.org/10.4401/ag-3259

19. Svetov B.S. 2000. On the theoretical substantiation of the seismoelectric method of geophysical exploration. Geofizika, 1: 28–39. (In Russ.).

20. Kormil'cev V.V. 1980. Transients under induced polarization. Moscow: Nauka, 112 p. (In Russ.).

21. Svetov B.S., Ageev V.V., Karinskij S.D., Ageeva O.A. 2013. Self-consistent problem of induced polarization of electrokinetic origin. Izv., Physics Solid Earth, 49(6): 836–843. https://doi.org/10.1134/s1069351313060141

22. Dudchenko I.P., Kostylev D.V., Gulyakov S.A., Stovbun N.S. 2021. A geophysical pulse voltage generator for seismic and electric exploration of the subsurface. Geosystems of Transition Zones, 5(1): 46–54. doi:10.30730/gtrz.2021.5.1.046-054 (In Russ.).

23. Kostylev D.V., Bogomolov L.M., Boginskaya N.V. 2019. About seismic observations on Sakhalin with the use of molecular-electronic seismic sensors of new type. IOP Conference Series: Earth and Environmental Science, 012009. doi:10.1088/1755-1315/324/1/012009

24. Kostylev D.V., Boginskaya N.V. 2020. Seismoacoustic observations using molecular-electronic hydrophones on Sakhalin and the South Kuril Islands (Kunashir Island). Geosystems of Transition Zones, 4(4): 486–499. doi:10.30730/gtrz.2020.4.4.486-499 (In Russ.).

25. Rozhdestvenskij V.S., Saprygin S.M. 1999. Structural relationships between Neogene and Quaternary deposits, active faults and seismicity in South Sakhalin. Geology of the Pacific Ocean, 6: 59–70. (In Russ.).

26. RU 2021666241. 2021. SpectrumSeism: Certificate of state registration of the computer program. Authors: Seleznev V.S., Lisejkin A.V., Sevost'yanov D.B., Bryksin A.A. No. 2021665611, application 11.10.2021; publ. 11.10.2021. (In Russ.).

27. Zakupin A.S., Bogomolov L.M., Mubassarova V.A., Il'ichev P.V. 2014. Seismoacoustic responses to high-power electric pulses from well logging data at the Bishkek geodynamical test area. Izv., Physics Solid Earth, 50(5): 692–706. https://doi.org/10.1134/s1069351314040193

28. Krasovskii G.I., Filaretov G.F. 1982. Experimental design. Minsk: Izd-vo BSU. 302 p. (In Russ.).

29. Kolesnikov V.P. 1984. Fundamentals of interpretation of electrical soundings. Ìoscow: Nauka, 400 p. (In Russ.).

30. Russell R.D., Butler K.E., Kepic A.W., Maxwell M. 1997. Seismoelectric exploration. The Leading Edge, 16(11): 1611–1615. https://doi.org/10.1190/1.1437536

31. Potylitsyn V., Kudinov D., Alekseev D., Kokhonkova E., Kurkov S., Egorov I., Pliss A. 2021. Study of the seismoelectric effect of the second kind using molecular sensors. Sensors, 21: 2301–2316. https://doi.org/10.3390/s21072301

32. Sorokin V., Yaschenko A., Mushkarev G., Novikov V. 2023. Telluric currents generated by solar flare radiation: Physical model and numerical estimations. Atmosphere, 14: 458–477. https://doi.org/10.3390/atmos14030458

33. Novikov V.A., Sorokin V.M., Yashchenko A.K., Pushkarev G.Yu. 2023. Physical model and numerical estimates of telluric currents generated by X-ray radiation of a solar flare. Dynamic Processes in Geospheres, 15(1): 23–44. (In Russ.). doi:10.26006/29490995_2023_15_1_23

34. Sycheva N.A. 2022. Solar flares, strong magnetic storms and variations in the level of seismic noise in the Northern Tien Shan. Geophysical Processes and the Biosphere, 21(4): 93–109. (In Russ.). doi:10.21455/GPB2022.4-7

35. Adushkin V.V., Loktev D.N., Spivak A.A. 2008. The effect of baric disturbances in the atmosphere on microseismic processes in the crust. Izv., Physics Solid Earth, 44(6): 510–517. https://doi.org/10.1134/s1069351308060086