Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, vol. 6, No. 3, pp. 246–255

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.3.246-255, https://www.elibrary.ru/dgwmst


Spatial structure of the tides near the southwestern coast of Kamchatka according to coastal observations and satellite altimetry data
Georgy V. Shevchenko1,2, https://orcid.org/0000-0003-0785-4618, shevchenko_zhora@mail.ru
Alexander T. Tsoi1
1Sakhalin Branch of Russian Federal Research Institute of Fisheries and Oceanography, Yuzhno-Sakhalinsk, Russia
2Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. Based on the known data on the amplitudes and phases of the main tidal waves in coastal areas of southwestern Kamchatka, their alongshore variability was analyzed. It is shown that they increase from south to north. However, it is difficult to accurately assess these variations due to the fact that coastal tide gauges, which were usually installed at the mouths of rivers, are affected by the distorting effect of bottom friction. Satellite altimetry data were used for a more accurate characterization of the spatial variability of tide magnitude. These data were obtained during the passes of the TOPEX/Poseidon satellite in 1992–2002 on the original and 2002–2005 on the orbits shifted by half the inter-track distance. The amplitudes of both diurnal and semidiurnal waves have been revealed to increase sharply in the north direction, and this increase is limited by the shelf zone of southwestern Kamchatka. Significant spatial variations in the tidal wave characteristics are the cause of strong alongshore currents in this area. Estimates obtained on the basis of calculating the difference in the tidal level at the points of various sub-satellite tracks have shown that the speed of the coastal flow can reach 1-1.3 knot. The main contribution to the formation of tidal currents is made by diurnal components.


Keywords:
tides, diurnal and semidiurnal tidal waves, amplitudes, phases, coastal observations, satellite altimetry

For citation: Shevchenko G.V., Tsoy A.T. Spatial structure of the tides near the southwestern coast of Kamchatka according to coastal observations and satellite altimetry data. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 3, pp. 246–255.
https://doi.org/10.30730/gtrz.2022.6.3.246-255, https://www.elibrary.ru/dgwmst

Для цитирования: Шевченко Г.В., Цой А.Т. Пространственная структура приливов у юго-западного побережья Камчатки по данным береговых наблюдений и спутниковой альтиметрии. Геосистемы переходных зон, 2022, т. 6, № 3, с. 246–255.
https://doi.org/10.30730/gtrz.2022.6.3.246-255, https://www.elibrary.ru/dgwmst


References

1. Tablitsy prilivov. Vody aziatskoy chasti SSSR i prilegayushchikh zarubezhnykh rayonov [Tide tables. Waters of the Asian part of the USSR and the surrounding foreign areas]. 1960. Leningrad: Gidrometeoizdat, 29 p. (In Russ.).

2. Deyeva R.A. 1970. Uroven’ Okhotskogo morya [The level of the Sea of Okhotsk]. Moscow; Leningrad, 530 p. (Trudy GOIN; 15). (In Russ.).

3. Sudzuki K., Kanari S. 1986. Tides in the Sea of Okhotsk. Marine Science, 18(7): 445–463.

4. Kowalik Z., Polyakov I. 1998. Tides in the Sea of Okhotsk. Physical Oceanography, 28(7): 1389–1409. https://doi.org/10.1175/1520-0485(1998)028<1389:titsoo>2.0.co;2

5. Choi B.H., Kim. D.H., Fang Y. 1999. Tides in the East Asian seas from a fine-resolution Global Ocean tide model. Marine Technology Society J., 33(1): 36–44. https://doi.org/10.4031/mtsj.33.1.5

6. Nekrasov A.V., Romanenkov D.A. 2003. [Prognostic assessment of the tidal level fluctuations in large-scale hydrotechnical construction on the coast of the White and Okhotsk seas]. In: Kolebaniya urovnya v moryakh [Sea level fluctuations]. Saint-Petersburg: RGGMU, p. 57–78. (In Russ.).

7. Shevchenko G.V., Romanov A.A. 2004. Tides characteristics in the Sea of Okhotsk definition from Topex/Poseidon sea level data. Issledovaniye Zemli iz kosmosa, 1: 49–62. (In Russ.).

8. Shevchenko G.V., Romanov A.A. 2008. Energetic characteristics of tidal and residual level oscillations in the Okhotsk Sea from satellite altimetry data. Issledovaniye Zemli iz kosmosa, 6: 67–76. (In Russ.).

9. Kovalev P.D., Rabinovich A.B., Kovbasyuk V.V. 1989. [Hydrophysical experiment at the southwestern shelf of Kam­chatka (KAMSHEL-87)]. Oceanology, 29(5): 738–744. (In Russ.).

10. Kovalev P.D., Shevchenko G.V. 2008. [ Experimental study of the long-wave processes at the Northwest Pacific shelf]. Vladivostok: Dal’nauka, 216 p. (In Russ.).

11. Gusev I.V., Lebedev S.A. 2013. [Consideration of the impact of ocean tides in the observation of geodetic artificial Earth satellites]. Izv. vuzov. Geodeziya i aerofotos’yemka, 1: 25–32. (In Russ.).

12. Voynov G.N. 2018. The new of data of tides in the Gulf of Finland in the Baltic Sea. Uchenyye zapiski RGGMU, 53: 83–96. (In Russ.). https://www.elibrary.ru/item.asp?id=36928472

13. Ray R.D., Egbert G.D. 2017. Tides and satellite altimetry. In: Stammer D., Cazenave A. (eds) Satellite altimetry over oceans and land surfaces. CRC Press, p. 427–458. https://doi.org/10.1201/9781315151779