Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, том 5, № 4, с. 439–447

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.4.439-447


Deterministic and stochastic oscillations of fractal type during cooling of the melt
Igor B. Krasnyuk1, https://orcid.org/0000-0001-7816-5743, igorkrasnuyk@rambler.ru
Andrey E. Zabolotin2, https://orcid.org/0000-0001-5952-9978, a.zabolotin@imgg.ru
1The Donetsk Institute for Physics and Engineering named after O.O. Galkin of the National Academy of Sciences of Ukraine, Donetsk, Ukraine
2Institute of Marine Geology and Geophysics of the Far Eastern Branch of the RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. A "single-phase" model of melt crystallization in the Penrose–Fife representation for temperature distributions under non-isothermal conditions is considered. The boundary conditions are assumed to be nonlinear and dynamic, i.e. they characterize the relaxation rate of the surface order parameter. In this case, the boundary conditions depend on the frequency of new phase nucleation and the rate of a melt crystallization in the (near-)surface layers of the mold. A method is proposed for predicting the appearance of ordered spatiotemporal (quasi-)crystalline structures of the fractal type of the crystalline phase in a liquid melt. The surface order parameter determines the mechanical and deformation properties of the sample depending on the temperature of the solid.


Keywords:
amorphous melt, difference equation with quasi-periodic perturbations, period-doubling bifurcations

For citation: Krasnyuk I.B., Zabolotin A.E. Deterministic and stochastic oscillations of fractal type during cooling of the melt. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 4, pp. 439–447. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2021.5.4.439-447

Для цитирования: Краснюк И.Б., Заболотин А.Е. Детерминированные и стохастические колебания фрактального типа при охлаждении расплава. Геосистемы переходных зон, 2021, т. 5, № 4, с. 439–447.
https://doi.org/10.30730/gtrz.2021.5.4.439-447


References

1. Aleksandrov L.N. 1989. Kinetika kristallizatsii i perekristallizatsii poluprovodnikovykh plenok [Сrystallization and recrystallization kinetics of semiconduct films]. Novosibirsk: Nauka, 224 p. (In Russ.).

2. Ananin S.I., Astashinsky V.M., Emel'yanenko A.S., Kostyukevich E.A., Kuz'mitski A.M., Zhvavy S.P., Anishchik V.M., Uglov V.V., Pun'ko A.V. 2006. Melting and crystallization dynamics of single-crystal silicon exposed to compression plasma flows. Technical Physics, 51(7): 853–859. https://doi.org/10.1134/s1063784206070061

3. Astashinskiy V.M., Ananin S.N., Askerko V.V. et al. 2002. [Compressive plasma flows effect on carbon steel and silicon]. Vakuumnaya tekhnika i tekhnologiya [Vacuum engineering and technology], 12(2): 91–94. (In Russ.).

4. Belen'kiy V.Z. 1989. Geometriko-veroyatnostnye metody kristallizatsii [Geometrical and probabilistic methods of crystallization]. Moscow: Nauka, 88 p. (In Russ.).

5. Vul E.B, Sinay Ya.G., Khanin K.N. 1984. Universal'nost' Feygenbauma i termodinamicheskiy formalizm [Feigenbaum universality and thermodynamic formalism]. Uspekhi matematicheskikh nauk, 39(3): 3–37. (In Russ.).

6. Kolmogorov A.N. 1937. K statisticheskoy teorii kristallizatsii metallov [On the statistical theory of metall crystallization]. Izv. AN SSSR. Seriya matematicheskaya, 1(3): 355–359. (In Russ.).

7. Kolmogorov A.N. 1941. Lokal'naya struktura turbulentnosti v neszhimaemoy vyazkoy zhidkosti pri ochen' bol'shikh chislakh Reynol'dsa [Local structure of the turbulence in an incompressible viscous fluid at very high Reynolds numbers]. Dokl AN SSSR, 30(4): 299–303. (In Russ.).

8. Skripov V.P. 1972. Metastabil'naya zhidkost' [Metastable liquid]. Moscow: Nauka, 312 p. (In Russ.).

9. Skripov V.P., Koverda V.P. 1984. Spontannaya kristallizatsiya pereokhlazhdennykh zhidkostey [The spontaneous crystallization of supercooled liquids]. Moscow: Nauka, 232 p. (In Russ.).

10. Uglov V.V., Anishchik V.M., Astashynski V.V., Astashinsky V.M., Ananin S.I., Askerko V.V., Kostyukevich E.A., Kuzmitsky A.M., Kvasov N.T., Danilyuk A.L. 2001. Formation of submicron cylindrical structures at silicon surface exposed to a compression plasma flow. J. of Experimental and Theoretical Physics Letters (JETP Letters), 74(4): 213–215.

11. Sharkovskiy A.M. 1964. Sosushchestvovanie tsiklov nepreryvnogo preobrazovaniya pryamoy v pryamuyu [Coexistence of the cycles of continuous map of the line into itself]. Ukrainskiy matematicheskiy zhurnal, 26(1): 61–71. (In Russ.).

12. Sharkovskiy A.N., Maystrenko Yu.L., Romanenko E.Yu. 1986. Raznostnye uravneniya i ikh prilozheniya [Difference equations and their applications]. Kiev: Naukova dumka, 280 p. (In Russ.).

13. Eydel'man E.D. 1995. Vozbuzhdenie elektricheskoy neustoychivosti nagrevaniem [Excitation of the electric instability by voltage]. Uspekhi fizicheskikh nauk, 165(11): 1279–1294. (In Russ.).

14. Caginalp G., Xie W. 1993. Phase-field and sharp-interface alloy models. Physical Review E, 48(3): 1897–1909. https://doi.org/10.1103/physreve.48.1897

15. Fife P.C., Penrose O. 1995. Interfacial dynamics for thermodynamically consistent phase-field models with nonconserved order parameter. Electronic J. of Differential Equations, 16: 1–49. https://digital.library.txstate.edu/handle/10877/7579

16. Krasnyuk I.B., Taranets R.M., Chugunova M. 2018. Dynamic boundary conditions in the interface modeling of binary alloys. AIMS Mathematics, 3(3): 409–425. https://doi.org/10.3934/Math.2018.3.409

17. Penrose O., Fife P.C. 1993. On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model. Physica D: Nonlinear Phenomena, 69(1-2): 107–113. https://doi.org/10.1016/0167-2789(93)90183-2