
Abstract PDF ENG. .PDF RUS | Full text PDF RUS |
Abstract. The object of study in this paper is the structure of the seismic focal zone of the Kamchatka region as a part of the Kuril-Kamchatka transitional convergence zone. When studying the morphology of the focal zone, seven layers were distinguished in accordance with the distribution of seismic energy by depth. Based on instrumental observations over 60 years (1962–2021), the maps of earthquake epicenters in the Kamchatka region were constructed for each layer, and seismicity characteristics were obtained: the number of events, depths of peak energy values, total energy, and the ratio of the total energy of earthquakes above class 14 to the total energy of earthquakes from class 10 to 14. Almost half of all seismic energy in the region over 60 years occurred at depths greater than 550 km. Features in the distribution of earthquakes were discovered: their number on the outer slope of the trench (Zenkevich Swell) to the SW of the Avacha Bay is greater than to the NE; in the layer at depths of 80–130 km, the epicenters of earthquakes in the Kamchatka Bay mark an extended lineament, the continuation of which includes the volcanoes of the Klyuchevskaya group and the Tolbachik volcano; the band of earthquakes for depths of 130–180 km and the structure of the volcanic belt overlap. On the vertical projection of the hypocenters of the section of the seismic focal zone to the south of the Shipunsky Peninsula, a steeply dipping fault separating the moving block of the frontal section from the continental lithosphere is distinguished. On the projection of the focal layer section, including the Tolbachik volcano and the Klyuchevskaya group of volcanoes, a vertical fracture was found under the volcanoes at a depth of 140–180 km. Based on the data presented in the article, a hypothesis explaining the morphology of the seismic focal zone not only by the subsidence of the oceanic lithosphere but also by the mantle flow directed to the SE from under the margin of Asia is proposed.
Keywords:
earthquake, Kurile-Kamchatka island arc, morphology of the seismic focal zone, Kamchatka
For citation: Shevchenko Yu.V. Some features of the morphology of the seismic focal zone of the Kamchatka region. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 1, pp. 5–21. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2025.9.1.005-021, https://www.elibrary.ru/tnsita
Äëÿ öèòèðîâàíèÿ: Øåâ÷åíêî Þ.Â. Íåêîòîðûå îñîáåííîñòè ìîðôîëîãèè ñåéñìîôîêàëüíîé çîíû Êàì÷àòñêîãî ðåãèîíà. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2025, ò. 9, ¹ 1, ñ. 5–21.
https://doi.org/10.30730/gtrz.2025.9.1.005-021, https://www.elibrary.ru/tnsita
References
1. Gordeev E.I., Fedotov S.A., Chebrov V.N. 2013. Detailed seismological investigations in Kamchatka during the 1961–2011 period: Main results. Journal of Volcanology and Seismology, 7: 1–15. https://doi.org/10.1134/s0742046313010041
2. Fedotov S.A., Kuzin I.P., Bobkov M.F. 1964. Detailed seismological studies in Kamchatka in 1961–1962. Izv. USSR Academy of Sciences. Ser. Geophysical, 9: 1360–1375. (In Russ.).
3. Kuzin I.P. 1974. [ Focal zone and structure of the upper mantle in the eastern Kamchatka region ]. Moscow: Nauka, 132 p. [In Russ].
4. Fedotov S.A., Gusev A.A., Shumilina L.S., Chernyshova G.V. 1985. Seismofocal zone of Kamchatka (geometry, location of sources in it, connection with volcanism). Volcanology and Seismology, 4: 91–107. (In Russ).
5. Fedotov S.A., Shumilina L.S., Chernyshova G.V. 1987. [Seismicity of Kamchatka and the Commander Islands based on detailed studies]. Volcanology and Seismology, 6: 29–61. (In Russ).
6. Gordeev E.I., Gusev A.A., Levina V.I., Leonov V.L., Chebrov V.N. 2006. Shallow earthquakes of the Kamchatka Peninsula. Journal of Volcanology and Seismology, 3: 28–38. (In Russ.). EDN: HTUGUR
7. Seliverstov N.I. 2007. Structure of Kamchatka seism-focal zone. Vestnik KRAUNTs. Nauki o Zemle, 1(9): 10–26. (In Russ.).
8. Kanamori H., Anderson D.L. 1975. Theoretical basis of some empirical relations in seismology. Bull. of the Seismological Society of America, 65: 1073–1095.
9. Allmann B.P., Shearer P.M. 2009. Global variations of stress drop for moderate to large earthquakes. J. of Geophysical Research: Solid Earth, 114, B01310. https://doi.org/10.1029/2008jb005821
10. Venkataraman A., Kanamori H.A. 2004. Observational constraints on the fracture energy of subduction zone earthquakes. J. of Geophysical Research: Solid Earth, 109, B05302. https://doi.org/10.1029/2003jb002549
11. Kennett B.L.N., Engdahl E.R., Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1): 108–124. https://doi.org/10.1111/j.1365-246x.1995.tb03540.x
12. Chebrov V.N., Droznin D.V., Kugaenko Yu.A., Levina V.I., Senyukov S.L., Sergeev V.A., Shevchenko Yu.V., Yashchuk V.V. 2013. The system of detailed seismological observations in Kamchatka in 2011. Journal of Volcanology and Seismology, 7(1): 16–36. https://doi.org/10.1134/s0742046313010028
13. Chebrova A.Yu., Chemarev E.A., Matveenko E.A., Chebrov D.V. 2020. Seismological data information system in Kamchatka Branch of GS RAS: organization principles, main elements and key functions. Geofizicheskie issledovaniya, 21(3): 66–91. https://doi.org/10.21455/gr2020.3-5
14. Bondar I., Storchak D.A. 2011. Improved location procedures at the International Seismological Centre. Geophysical J. International, 186: 1220–1244. https://doi.org/10.1111/j.1365-246x.2011.05107.x
15. Dziewonski A.M., Chou T.A., Woodhouse J.H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. of Geophysical Research: Solid Earth, 86(B4): 2825–2852. https://doi.org/10.1029/jb086ib04p02825
16. Ekstrom G., Nettles M., Dziewonski A.M. 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200: 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
17. Fedotov S.A. 1972. Energy classification of Kuril-Kamchatka earthquakes and the problem of magnitudes. Moscow: Nauka, 116 p. (In Russ).
18. Sergeev K.F. 1976. Tectonics of the Kuril island system. Moscow: Nauka, 239 p. (In Russ.).
19. Balakina L.M. 1983. Earthquakes of the Pacific Ocean (spatial location and source processes). Geotectonics, 5: 20–51.
20. Lobkovskii L.I., Nikishin A.M., Khain I.E. 2004. Modern problems of geotectonics and geodynamics. Moscow: Nauchnyi mir, 610 p. (In Russ.).
21. Lobkovskii L.I., Vladimirova I.S., Gabsatarov I.S., Garagash I.A., Baranov B.V., Steblov G.M. 2017. Post-seismic motions after the 2006–2007 Simushir earthquakes at different stages of the seismic cycle. Doklady Earth Sciences, 473: 375–379. https://doi.org/10.1134/s1028334x17030266
22. Lobkovskii L.I., Vladimirova I.S., Alekseev D.A., Gabsatarov Yu.V. 2021. Two-element keyboard model of generation of the strongest subduction earthquakes. Doklady Earth Sciences, 496: 72–75. https://doi.org/10.1134/s1028334x2101013x
23. Seliverstov N.I. 2009. Geodynamics of the junction zone of the Kuril-Kamchatka and Aleutian island arcs. Petropavlovsk-Kamchatsky: Publ. House of Vitus Bering Kamchatka State University, 191 p. (In Russ.).
24. Lobkovskii L.I. 1988. Geodynamics of spreading zones, subduction zones and two-tier plate tectonics. Moscow: Nauka, 252 p. (In Russ.).
25. Sorokhtin O.G., Ushakov S.A. 1993. [ The nature of tectonic activity of the Earth ]. Moscow: VINITI, 291 p. (Results of science and technology. Physics of the Earth). (In Russ.).
26. Hess H.H. 1962. History of the ocean basins. In: Petrological Studies: A volume in honor of A.F. Buddington. New York: Geological Society of America, p. 599–620. https://doi.org/10.1130/petrologic.1962.599
27. Dobretsov N.L., Kidryashkin A.G., Kidryashkin A.A. 2001. Deep geodynamics. Novosibirsk: Publ. House of the Siberian Branch of RAS, 408 p. (In Russ.).
28. Zharkov V.N. 2012. Physics of the Earth's interior. Moscow: Nauka i obrazovanie, 384 p. (In Russ.).
29. Brudzinski M.R., Thurber C.H., Hacker B.R., Engdahl R. 2007. Global prevalence of double Benioff zones. Science, 316(5830): 1472–1474. https://doi.org/10.1126/science.1139204
30. Hacker G.R., Peacock S.M., Aubers G.A., Holloway S.D. 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. of Geophysical Research: Solid Earth, 108(B1): 2030–2046. https://doi.org/10.1029/2001jb001129
31. Adushkin V.V., Kocharyan G.G., Pavlov D.V., Vinogradov V.A., Goncharov A.I., Kulikov V.I., Kulyukin A.A. 2009. Influence of seismic vibrations on the development of tectonic deformations. Doklady Earth Sciences, 426(1): 588–590. https://doi.org/10.1134/s1028334x09040175
32. Kocharyan G.G., Fedorov A.E 1990. On the mechanics of the seismic process in a blocky geophysical medium. Dokl. Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences , 315(6): 1345–1349. (In Russ.).
33. Lyskova E.L. 2014. Deep focus earthquakes. In: Voprosy geofiziki, 47. Saint Petersburg, p. 62–74. (In Russ.).
34. Didenko A.N., Kuzmin M.I. 2018. Deep focus earthquakes: spatial distribution, possible causes and geodynamic consequences. Geodynamics and Tectonophysics, 9(3): 947–965. (In Russ.). https://doi.org/10.5800/GT-2018-9-3-0378947
35. Zonenshain L.P., Kuzmin M.I. 1979. Paleogeodynamics. Moscow: Nedra, 311 p. (In Russ.).
36. Nelson T.H., Temple P.G. 1972. Mainstream mantle convection: a geological analysis of plate motion. Bull. of the American Association of Petroleum Geologists (AAPG Bulletin), 56(2): 226–246. https://doi.org/10.1306/819a3e54-16c5-11d7-8645000102c1865d
37. Ito E., Sato H. 1991. Aseismicity in the lower mantle by superplasticity of the descending slab. Nature, 351: 140–141. https://doi.org/10.1038/351140a0
38. Pavlenkova N.I., Kashubin S.N., Gontovaya L.I., Pavlenkova G.A. 2018. Deep structure and geodynamics of the Sea of Okhotsk region. Regional Geology and Metallogeny, 76: 70–82. (In Russ.).
39. Laverov N.P., Lappo S.S., Lobkovsky L.I., Baranov B.V., Kulinich R.G., Karp B.Ya. 2006. The Central Kuril “gap”: structure and seismic potential. Doklady Earth Sciences, 409(5): 787–790.
40. Zonenshain L.P., Savostin L.A. 1992. Introduction to geodynamics. Moscow: Nauka, 192 p. (In Russ.).
41. Kononov M.V. 1989. [ Plate tectonics of the Northwest Pacific ]. Moscow: Nauka, 169 p. (In Russ.).
42. Kulakov I.Yu., Dobretsov N.L., Bushenkova N.A., Yakovlev A.V. 2011. Slab shape in subduction zones beneath the Kurile-Kamchatka and Aleutian arcs based on regional tomography results. Russian Geology and Geophysics, 52(6): 830–851.