Abstract PDF ENG. .PDF RUS | Full text PDF RUS |
Abstract. Based on the results of physical modeling of the processes of fault zone formation, general regularities of their structural and dynamic development were revealed. These regularities were used as the basis of the author’s tectonophysical model of the tectonic earthquake focus, with a precursor resulting from it. Such a precursor is the self-organization of the deformation process of active segments in the focus of an impending earthquake. It was shown that this process can be diagnosed preventively using the deformation and seismic monitoring data and manifests itself in the form of low-frequency self-oscillations immediately before the seismic event in the time interval from the first days to the first hours. The stable manifestation of this precursor allows us to classify it as short-term.
Keywords:
fault zone, segmentation, tectonophysical model, tectonic earthquake focus, self-organization, precursors
For citation: Bornyakov S.A., Dobrynina A.A., Panteleev I.A., Sankov V.A., Salko D.V., Vstovsky G.V., Miroshnichenko A.I., Shagun A.N., Sintsov A.E., Karimova A.A. Tectonophysical model of the tectonic earthquake focus. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2024, vol. 8, No. 4, pp. 313–327. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2024.8.4.313-327, https://www.elibrary.ru/xhqjfo
Для цитирования: Борняков С.А., Добрынина А.А., Пантелеев И.А., Саньков В.А., Салко Д.В., Встовский Г.В., Мирошниченко А.И., Шагун А.Н., Синцов А.Е., Каримова А.А. Тектонофизическая модель очага тектонического землетрясения. Геосистемы переходных зон, 2024, т. 8, № 4, с. 313–327.
https://doi.org/10.30730/gtrz.2024.8.4.313-327, https://www.elibrary.ru/xhqjfo
References
1. Gamburtsev G.A. 1955. [Status and prospects of works in the field of earthquake forecasting]. Bull. Soveta po seysmologii AN SSSR, 1: 7–14. (In Russ.).
2. Pevnev A.K. 2015. Earthquake forecasting is possible (on the place of geodetic research in solving the problem of earthquake forecasting). Pt 1. Grigory A. Gamburtsev and possibility of earthquake prediction. Prostranstvo i Vremya = Space and Time, 4(22): 195–201. (In Russ.).
3. Geller R.J., Jackson D.D., Kagan Y.Y., Mulargia F. 1997. Earthquakes cannot be predicted. Science, 275(5306): 1616?1619. https://doi.org/10.1126/science.275.5306.1616
4. Wyss M. et al. 1997. Cannot earthquakes be predicted? Science, 278: 487–488. https://doi.org/10.1126/science.278.5337.487
5. Bogomolov L.M., Sycheva N.A. 2022. Earthquake predictions in XXI century: prehistory and concepts, precursors and problems. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 6(3): 164–182. https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182
6. Koronovsky N.V., Zakharov V.S., Naimark A.A. 2019. The short-term forecast of earthquakes: reality, scientific perspective or the project-phantom? Moscow University Bulletin. Series 4, Geology, 3: 3–12. (In Russ.). https://doi.org/10.33623/0579-9406-2019-3-3-12
7. Cicerone R.D., Ebel J.E., Britton J. 2009. A systematic compilation of earthquake precursors. Tectonophysics , 476: 371–396. https://doi.org/10.1016/j.tecto.2009.06.008
8. Kondepudi D., Prigogin I. 1998. Modern thermodynamics: From heat engines to dissipative structures. Chichester, UK: Wiley, 486p.
9. Haken H. 1980. Synergetics . Moscow: Mir, 404 p. (In Russ.).
10. Mandelbrot B.B. 1982. The fractal geometry nature . N.Y.: Freeman, 480 p.
11. Shuster G. 1988. Deterministic chaos. An introduction. Weinheim: VCH, 270 p.
12. Pushcharovsky Yu.M. (Ed.) 1994. Nonlinear geodynamics. Moscow: Nauka, 192 p.
13. Pushcharovsky Yu.M. 1998. [Geologic expression of nonlinear geodynamic processes]. Geotectonics, 32 (1): 3–14. (In Russ.)
14. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F. 1982. On the discrete property of rocks. Izvestia AN SSSR, Physics of the Earth, 12: 3–18. (In Russ.)
15. Crampin, S., Gao Y. 2013. The new geophysics. Terra Nova, 25(3): 173–180. https://doi.org/10.1111/ter.12030
16. Kagan Y.Y. 1994. Observational evidence for earthquakes as nonlinear dynamic process. Physica D, 77(4): 160–192.
17. Bak P., Tang C. 1989. Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(B11): 15635–15637. https://doi.org/10.1029/JB094iB11p15635
18. Ito K., Matsuzaki M. 1990. Earthquakes as self-organized critical phenomena. Journal of Geophysical Research, 95(B5): 6853–6860. https://doi.org/10.1029/JB095iB05p06853
19. Olami Z., Feder S., Christensen K. 1992. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters , 68(8): 1244–1247. https://doi.org/10.1103/physrevlett.68.1244
20. Sornette D. 2000. Critical phenomena in natural sciences. Chaos, fractals, self-organization and disorder: Concepts and tools. Heidelberg: Springer-Verlag, 423 p. https://doi.org/10.1007/978-3-662-04174-1 (Springer Ser. Synerg.).
21. Zoller G., Hainzl S., Kurths J. 2001. Observation of growing correlation length as an indicator for critical point behavior prior to large earthquakes. Journal of Geophysical Research: Solid Earth, 106: 2167–2176. https://doi.org/10.1029/2000jb900379
22. Litovchenko I.N. 2021. On the types of earthquake sources, their models and formation. (In Russ.). URL: http://www.sciteclibrary.ru/texsts/rus/stat/st4977.pdf
23. Panteleev I.A., Naimark O.B. 2014. Modern trends in mechanics of tectonic earthquakes. Perm Federal Research Center J., 3: 44–62. (In Russ.). EDN: TDURFP
24. Goldin S.V. 2005. Macro- and mesostructures of the earthquake focal region. Fizicheskaya mezomekhanika = Physical Mesomechanics, 8(1): 5–14. (In Russ.).
25. Gzovsky M.V. 1957. [Tectonophysical substantiation of geological criteria of seismicity]. Izvestiya AN SSSR. Ser. Geofiz., 2: 141–160. (In Russ.).
26. Gorshkov G.P. 1984. Regional seismotectonics of the southern territory of the USSR. Alpine Belt. Moscow: Nauka, 272 p. (In Russ.).
27. Tuliani L.I. 1999. [ Seismicity and seismic hazard: based on thermodynamic and rheological parameters of the tectonosphere ]. Moscow: Scientific World, 216 p. (In Russ.).
28. Rebetsky Y.L. 2007. Problems of earthquake prediction theory: Analysis of fundamentals from the perspective of a deterministic approach. Geofizicheskiy zhurnal, 29(4): 92–110. (In Russ.).
29. Sherman S.I. 2014. Seismic process and the forecast of earthquakes: tectonophysical conception. Novosibirsk: Geo, 359 p. (In Russ.).
30. Bath M., Duda S.J. 1964. Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantities. Annals of Geophysics, 17(3): 353–368. https://doi.org/10.4401/ag-5213
31. Deshcherevsky A.V., Lukk A.A., Sidorin A.Ya. 2003. Fluctuations of geophysical fields and earthquake prediction. Physics of the Earth, 4: 3–20. (In Russ.).
32. Kocharyan G.G. 2010. Fault zone as a nonlinear mechanical system. Fizicheskaya. mezomekhanika = Physical Mesomechanics, 13 (Spec. Iss.): 5–17. (In Russ.). EDN: NQXHWN
33. Kuznetsov O.L. 1981. Nonlinear geophysics. In: [ Problems of nonlinear geophysics ]. Moscow: VNIIYaGG, p. 5–20. (In Russ.).
34. Kuznetsov O.L. (Ed.) 1981. [ Problems of nonlinear geophysics ]. Moscow: VNIIYaGG, 187 p. (In Russ.).
35. Panteleev I.A., Plekhov O.A., Naymark O.B. 2011. Selfsimilarity mechanisms of damage growth in solids experiencing quasi-brittle fracture. Computational Continuum Mechanics, 4(1): 90–100. (In Russ.).
36. Rodkin M.V. 2011. Alternative to soc concept-model of seismic regime as a set of episodes of random avalanche-like releases occurring on a set of metastable subsystems. Izvestiya, Physics of the Solid Earth, 47(11): 966–973.
37. Sobolev G.A., Ponomarev A.V. 2003. Earthquake physics and precursors. Moscow: Nauka, 270 p. (In Russ.).
38. Tyupkin Yu.S. 2004. Formation of potential earthquake focus: an analogy with phase transition. Computational Seismology, 35: 296–311. (In Russ.).
39. Brace W.F., Byerlee J.D. 1966. Stick-slip as a mechanism for earthquake. Science, 153: 990–992. https://doi.org/10.1126/science.153.3739.990
40. Goebel T.H.W., Becker T.W., Schorlemmer D., Stanchits S., Sammis C., Rybacki E., Dresen G. 2012 . Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. Journal of Geophysical Research, 117(B3). https://doi.org/10.1029/2011JB008763
41. Goebel T.H.W., Candela T., Sammis C.G., Becker T.W., Dresen G., Schorlemmer D. 2014. Seismic event distributions and off-fault damage during frictional sliding of saw-cut surfaces with pre-defined roughness. Geophysical Journal International, 196: 612–625. https://doi.org/10.1093/gji/ggt401
42. Ma J., Sherman S.I., Guo Y.S. 2012. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5o bending fault. Science China Earth Sciences, 55: 869–881. http://dx.doi.org/10.1007/s11430-011-4274-2
43. Jin M., Yanshuang G., Sherman S.I. 2014. Accelerated synergism along a fault: A possible indicator for an impending major earthquake. Geodynamics & Tectonophysics, 5(2): 387–399. (In Russ.). https://doi.org/10.5800/GT-2014-5-2-0134
44. Bornyakov S.A., Seminsky K.Zh., Buddo V.Yu., Miroshnichenko A.I., Cheremnykh A.V., Cheremnykh A.S., Tarasova A.A. 2014. Main regularities of faulting in lithosphere and their application (based on physical modelling results). Geodynamics & Tectonophysics, 5(4): 823–861. (In Russ.). https://doi.org/10.5800/GT-2014-5-4-0159
45. Bornyakov S.A., Panteleev I.A., Cheremnykh A.V., Karimova A.A. 2018. Physical modeling experiments to study periodic activation of faults in seismic zones. Geodynamics & Tectonophysics, 9(3): 653–670. (In Russ.). https://doi.org/10.5800/gt-2018-9-3-0366
46. Karimova А.А., Bornyakov S.A. 2020. The evolution of the discontinuos structure of the shear zone as a periodic process (based on physical modeling). The Bulletin of Irkutsk State University. Series Earth Sciences, 33: 44–52. (In Russ.). https://doi.org/10.26516/2073-3402.2020.33.44
47. Sutton M.A., Orteu J.J., Schreier H.W. 2009. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Springer, 316 p.
48. Sherman S.I., Bornyakov S.A., Buddo V.Yu. 1983. [ Areas of dynamic influence of faults (modelling results) ]. Novosibirsk: Nauka, 112 p. (In Russ.).
49. Sherman S.I., Seminsky K.Zh., Bornyakov S.А., et al. 1991. Faulting in the lithosphere. shear zones. Novosibirsk: Nauka, 261 p. (In Russ.).
50. Seminsky K.Zh. 2003. The internal structure of continental fault zones: tectonophysical aspect. Novosibirsk: GEO, 244 p. (In Russ.).
51. Rebetsky Yu.L. 2007. State and problems of earthquake forecast theory. Analysis of the foundations from the standpoint of a deterministic approach. Geofizicheskiy zhurnal, 29(4): 92–110. (In Russ.). https://disk.yandex.ru/d/SMrTgPXpqS744Q (дата обращения 19.11.2024).
52. Rebetsky Y.L. 2007. New data on natural stresses in the preparation area of a strong earthquake. The model of earthquake source. Geofizicheskiy zhurnal, 29(6): 92–110. (In Russ.).
53. Bornyakov S.A. 1990. Quantitative analysis of parameters of shear faults varying in scale. Geologiya i geofizika, 10: 34–42. (In Russ.).
54. Bornyakov S.A., Vstovskii G.V. 2010. The first experiment of seismodeformational monitoring of the Baikal rift zone: example of the August 27, 2008, South-Baikal earthquake. Doklady Earth Sciences, 431(2): 469–473.
55. Bornyakov S.A., Miroshnichenko A.I., Vstovsky G.V., Sintsov A.E., Salko D.V. 2022. New approach to strong earthquakes prediction in the Southern Baikal region on the basis of rock deformation monitoring data: methodology and results. Geodynamics & Tectonophysics, 13(2): 0588. (In Russ.). https://doi.org/10.5800/GT-2022-13-2-0588
56. Bornyakov S.A., Dobrynina A.A., Seminsky K.Zh., Sankov V.A., Radziminovich N.A., Salko D.V., Shagun A.N. 2021 . The Bystrinskii earthquake in the Southern Baikal Region (Sep. 21, 2020, Mw = 5.4): General characteristics, basic parameters, and deformation signs of the transition of the focus to the meta-unstable state. Doklady Earth Sciences, 498(1): 427–431. https://doi.org/10.1134/s1028334x21050044
57. Bornyakov S.A., Dobrynina A.A., Shagun A.N., Sankov V.A., Salko D.V., Miroshnichenko A.I., Vstovsky G.V., Sintsov A.E. 2023 . On similarities between deformation processes preceding ice shocks and tectonic earthquakes. Doklady Earth Sciences, 508: 91–96. https://doi.org/10.1134/s1028334x22602097
58. Dobrynina A.A., Sankov V.A., Bornyakov S.A., Korol S.A., Sankov A.V. 2023. Anomalous seismic noises from the December 9, 2020 Mw = 5.6 Kudara earthquake in the Baikal basin. Doklady Earth Sciences, 508: 23–29. https://doi.org/10.1134/s1028334x22601912
59. Braginskaya L.P., Grigoryuk A.P., Kim M. 2024. Application of machine learning methods to the problem of identifying earthquake precursors in the Baikal Region. In: Marchuk Scientific Readings: Theses of the International Conference, October 7–11, 2024. Institute of Computational Mathematics and Mathematical Geophysics SB RAS, p. 121.