Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, № 2, pp. 124–129


Vertical motion modeling as a result of mantle convection on the Sea of Okhotsk profile
Rustam F. Bulgakov,,
Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. Vertical motions, especially in the active continental margins such as Kuril-Kamchatka transition zone, are still pure studied. One of the factors significantly affecting the amplitudes and directions of vertical motions is mantle convections. Estimates of the amplitudes of vertical motions in region have been obtained by means of numerical modeling of the mantle convection made by the method of finite elements. The values of emergences in the area of Sakhalin Island and the Kuril Ridge from 0–3 to 13 m were obtained with the accepted rates of mantle convection from 1 to 5 mm/year. The results obtained should be taken into account when reconstructing neotectonic history of the region and assessing the geodynamic situation in the region of the Sea of Okhotsk.

mantle convection, region of the Sea of Okhotsk, vertical motions, method of finite elements, Moho discontinuity

For citation: Bulgakov R.F. Vertical motion modeling as a result of mantle convection on the Sea of Okhotsk profile. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 2, pp. 124–129. (In Russ., abstr. in Engl.).,

Для цитирования: Булгаков Р.Ф. Моделирование вертикальных смещений в результате мантийной конвекции на профиле через Охотское море. Геосистемы переходных зон, 2022, т. 6, № 2, с. 124–129.,


1. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A. 2001. Deep-level geodynamics. 2 ed., add. and rework. Novosibirsk: Publ. by the Siberian Branch of RAS, GEO, 409 p. (In Russ.).

2. Hayes G.P., Wald D.J., Johnson R.L. 2012. Slab1.0: A three dimensional model of global subduction zone geometries. J. of Geophysical Research: Solid Earth, 117(B1): B01302.

3. Billen M.I., Gurnis M., Simons M. 2003. Multiscale dynamics of the Tonga–Kermadec subduction zone. Geophysical J. International, 153: 359–388.

4. Schellart W.P., Stegman D.R., Farrington R.J., Moresi L. 2011. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. J. of Geophysical Research, 116: B10408.

5. Raback P., Ruokolainen J., Lyly M., Jarvinen E. 2001. Fluid-structure interaction boundary conditions by arti?cial compressibility. In: ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, 4–7 September 2001.

6. Bulgakov R.F., Senachin V.N. 2019. Marine terraces and hydroisostasy influence on the vertical movements of the Sakhalin. Geosistemy perekhodnykh zon = Geosystems of Transition Zones, 3(3): 277–286.

7. Melnikov O.A. 2011. Sakhalin Island: its geological past, recent and probable future. Vestnik of the Sakhalin Museum.

8. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.).

9. Bulgakov R.F. 2021. 3D modeling of the hydroisostasy effect with a configuration of Moho surface of the Sea of Okhotsk close to real. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 5(4): 339–345. (In Russ., abstr. in Engl.).