Geosistemy perehodnykh zon = Geosystems of Transition Zones / √еосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 2, pp. 138Ц152

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.2.138-145.145-152


Fundamental for self-developing processes model and problems of its application to earthquakes prediction in the Far East region
Leonid M. Bogomolov*1, https://orcid.org/0000-0002-9124-9797, bleom@mail.ru
Vladimir N. Sychev2, https://orcid.org/0000-0001-7508-9087, sychev@gdirc.ru

1Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
2Research Station RAS in Bishkek city, Kyrgyzstan
Abstract PDF ENG –езюме PDF RUS Full text PDF RUS&ENG

Abstract. Seismic activation in the period of foreshocks (prior to the mainshock) described by the model of self-developing processes (SDP) is possibly a manifestation of explosive instability of low frequency straining waves in metastable medium. To highlight so nontrivial relationship of continuous wave motions and discrete seismic events flow is a goal of this narrative. Thus, the rationale of the SDP model (the equation, in reality) has been modified, which is of importance in relevance with the article by the Malyshevs in the current issue (A.I. Malyshev, L.K. Malysheva. Precedent-extrapolation estimate of the seismic hazard in the Sakhalin and South Kurils region) which is to improve the seismic hazard estimates by means of this model. A new way to reveal the very beginning of blow-up regime after quasi-stationary one is proposed.


Keywords:
equation of the self - developing processes model, foreshock sequence, seismic events accumulation, waves interaction, metastable medium, explosive instability

For citation: Bogomolov L.M., Sychev V.N. Fundamental for self-developing processes model and problems of its application to earthquakes prediction in the Far East region. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 2, pp. 128Ц137. (In Russ. & Engl.).
https://doi.org/10.30730/gtrz.2021.5.2.138-145.145-152

ƒл€ цитировани€: Ѕогомолов Ћ.ћ., —ычев ¬.Ќ. ‘изические основы модели саморазвивающихс€ процессов и вопросы ее применени€ дл€ прогнозов землетр€сений в ƒальневосточном регионе. √еосистемы переходных зон, 2021, т. 5, є 2, с. 128Ц137.
https://doi.org/10.30730/gtrz.2021.5.2.138-145.145-152


References

1. Bers A., Kaup D.J., Reiman A.H. 1976. Nonlinear interaction of three wave packets in a homogeneous medium. Physical Review Letters, 37(4): 182Ц185. https://doi.org/10.1103/physrevlett.37.182

2. Bowman D.D., Ouillon G., Sammis C.G., Sornette A., Sornette D. 1998 . An observational test of the critical earthquake concept. J. of Geophysical Research: Solid Earth, 103(B10): 24359Ц24372. https://doi.org/10.1029/98jb00792

3. Bykov V.G. 2005. Strain waves in the Earth: theory, field data, and models. Russian Geology and Geophysics, 46(11): 1176Ц1190. (In Russ.).

4. Bykov V.G. 2018. Prediction and observation of strain waves in the Earth. Geodynamics & Tectonophysics, 9(3): 721Ц754. (In Russ.).

5. Cianchini G., De Santis Ang., Giovambattista R.D., Abbattista C., Amoruso L., Campuzano S.A., Carbone M., Cesaroni C., De Santis Anna, Marchetti D. et al. 2020. Revised accelerated moment release under test: Fourteen worldwide real case studies in 2014Ц2018 and simulations. Pure and Applied Geophysics, 177: 4057Ц4087. https://doi.org/10.1007/s00024-020-02461-9

6. Das S., Scholz C. H. 1981. Theory of time-dependent rupture in the Earth. J. of Geophysical Research: Solid Earth, 86: 6039Ц6051. https://doi.org/10.1029/jb086ib07p06039

7. Debate on evaluation of the VAN Method: EditorТs introduction. 1996. Geophysical Research Letters, 23(11): 1291Ц1293. https://doi.org/10.1029/96gl00742

8. Geller R. 1997. Earthquake prediction: critical review. Gephysical J. International, 131(3): 425Ц450. https://doi.org/10.1111/j.1365-246x.1997.tb06588.x

9. Hardebeck J.L., Felzer K.R., Michael A.J. 2008. Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant. J. of Geophysical Research, 113(B08310). doi:10.1029/2007JB005410

10. Jaume S., Sykes L. 1999. Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes. Pure and Appl. Geophysics, 155: 279Ц305. https://doi.org/10.1007/s000240050266

11. Kharakhinov V.V., GalТtsev-Bezyuk S.D., Tereshchenkov A.A. 1984. [Sakhalin faults]. Tikhookeanskaya geologiya = Geology of the Pacific Ocean, 2: 77Ц86. (In Russ.).

12. Kuksenko V.S. 1986. [Transition model from micro- to macro-destruction of the solids]. In: (Ed. S.N. Zhurkov) Fizika prochnosti i plastichnosti [Physics of strength and plasticity ]. Leningrad: Nauka, p. 36Ц41.

13. Malinetskiy G.G., Potapov A.B. 2002. [Modern problems of nonlinear dynamics ]. 2 ed., revised and enlarged. Moscow: Editorial URSS, 358 p.

14. Malyshev A.I. 1991. Dynamics of self-developing processes. Volcanology & Seismology , 4: 61Ц72. (In Russ.).

15. Malyshev A.I., 2019. The predictability of the seismicity and large earthquakes: Kamchatka 1962 to 2014. J. of Volcanology and Seismology, 13: 42Ц55.

16. Malyshev A.I. 2020. Predictability of the seismic energy flux: Southern Europe and the Mediterranean. J. of Volcanology and Seismology, 14(1): 30Ц43.

17. Malyshev A.I., Malysheva L.K. 2018. Predictability of seismic energy rate in northwest frame of Pacific Ocean on the base of USGS catalogue. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(3): 141Ц153. (In Russ.). https://doi.org/10.30730/2541-8912.2018.2.3.141-153

18. Malyshev A.I., Tikhonov I.N. 1991. [Regularities of the dynamics of the foreshock and aftershock sequences in the region of South Kuril Islands]. Doklady AN USSR = Proceedings of the USSR Academy of Sciences, 319(1): 134Ц137. (In Russ.).

19. Malyshev A.I., Tikhonov I.N. 2007. Nonlinear regular features in the development of the seismic process in time. Izv. Physics of the Solid Earth, 43(6): 476Ц489.

20. Myachkin V.I., Kostrov B.V., Sobolev G.A., Shamina O.G. 1975. [Fundamentals of the source physics and earthquakes precursors]. In: Fizika ochaga zemletryaseniya [Physics of earthquake source ]. Moscow: Nauka, p. 6Ц29.

21. Nikolaevsky V.N. 1996. Geomechanics and fluid dynamics. Moscow: Nedra, 447 p.

22. Ostrovskiy L.A., Rybak S.A., Tsimring L.Sh. 1986. Negative energy waves in hydrodynamics. Soviet Physics Uspekhi, 29(11): 1040Ц1052. https://doi.org/10.1070/pu1986v029n11abeh003538

23. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. 1984. Integraly i ryady [Integrals and series]. Moscow: Nauka, 800 p.

24. Rabinovich M.I., Reutov V.P., Tsvetkov A.A. Coalescence of wave pulses or beams in explosive instability. Soviet Physics Ц JETP, 40(2): 260Ц263. URL: http://www.jetp.ac.ru/cgi-bin/dn/e_040_02_0260.pdf

25. Ryskin N.M., Trubetskov D.I. 2017. [Nonlinear waves ]. Moscow: LENARD, 312 p.

26. Sobolev G.A., ZavТyalov A.D. 1980. [On the concentration criterion of seismogenic ruptures]. Doklady AN USSR = Proceedings of the USSR Academy of Sciences , 252 (1): 69Ц71. (In Russ.).

27. Tikhonov I.N., Mikhaylov V.I., Malyshev A.I. 2017. Modeling the Southern Sakhalin earthquake sequences preceding strong shocks for short-term prediction of their origin time. Russian J. of Pacific Geology , 11(1): 1Ц10. https://doi.org/10.1134/s1819714017010092

28. Trubetskov D.I., Rozhnev A.G. 2001. [Linear oscillations and waves ]. M.: Fizmatlit, 416 p.

29. Tikhonov I.N., Kim Ch.U. 2010. Confirmed prediction of the 2 August 2007 Mw 6.2 Nevelsk earthquake (Sakhalin Island, Russia). Tectonophysics, 485: 85Ц93. https://doi.org/10.1016/j.tecto.2009.12.002

30. Tikhonov I.N., Rodkin M.V. 2012(2011). The current state of art in earthquake prediction, the typical precursors, and the experience in the earthquake forecasting at the Sakhalin Island and the surrounding areas. In: (Ed. Sebastiano DТAmico) Earthquake Research and Analysis Ц Statistical Studies, Observations and Planning. Book 5, p. 43Ц79. doi:10.5772/28689

31. Varnes D.J. 1989. Predicting earthquakes by analyzing accelerating precursory seismic activity. Pure and Applied Geophysics, 130(4): 661Ц686. https://doi.org/10.1007/bf00881603

32. Vere-Jones D., Robinson R., Yang W. 2001. Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation. Geophysical J. International, 144: 517Ц531. https://doi.org/10.1046/j.1365-246x.2001.01348.x

33. Voeykova O.A., Nesmeyanov S.A., Serebryakova L.I. 2007. [Neotectonics and active faults of Sakhalin]. Moscow: Nauka, 187 p. (In Russ.).

34. Voight B. 1989. A relation to describe rate-dependent material failure. Science , 243(4888): 200Ц203. https://doi.org/10.1126/science.243.4888.200

35. Volegov P.S., Gribov D.S., Trusov P.V. 2017(2015). Damage and fracture: classical continuum theories. Physical mesomechanics, 20(2): 157Ц173. https://doi.org/10.1134/s1029959917020060

36. Zakharov V.E., Manakov S.V. 1976(1975). The theory of resonance interaction of wave packets in nonlinear media. Soviet Physics Ц JETP, 42(5): 842Ц850. URL: http://jetp.ac.ru/cgi-bin/dn/e_042_05_0842.pdf

37. Zakupin A.S., Boginskaya N.V., Andreeva M.Yu. 2019. Methodological aspects of the study of seismic sequences by SDP (self-developing processes) on the example of the Nevelsk earthquake on Sakhalin. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(4): 377Ц389. (In Russ, abstr. in Engl.). https://doi.org/10.30730/2541-8912.2019.3.4.377-389

38. Zavyalov A.D. 2005. From the kinetic theory of strength and fracture concentration criterion to the seismogenic fracture density and earthquake forecasting. Physics of the Solid State, 47(6): 1034Ц1041. https://doi.org/10.1134/1.1946852