Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2020, vol. 4, No. 4, pp. 372–383

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2020.4.4.372-383


New data on the latest stress state of the earth’s crust on Sakhalin Island (based on structural and geomorphological indicators of tectonic stress)
Lidia A. Sim1, Pavel A. Kamenev*2, Leonid M. Bogomolov2
1Schmidt Institute of Earth Physics, RAS, Moscow, Russia
2Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
*E-mail: p.kamenev@imgg.ru
Abstract PDF ENG Резюме PDF RUS Полный текст PDF RUS

Abstract. To verify the ideas about neotectonic and modern stresses of Sakhalin, we analyze structural and geomorphological signs of the stress state of this region, discovered during field work in 2019–2020. Along with updated field measurements using the structural-geomorphological method, data on crustal deformation based on GPS/GLONASS measurements are presented. Data from geophysical studies (seismological and borehole methods) are given. The identification of three types of areas with different geodynamic regime: transtension, transpression and strike-slip (simple shift) is confirmed. Variations of the current stress field at the boundaries of regions with different geodynamic regime for the formation of new faults are noted. Northern Sakhalin has specific directions of compression axes of neotectonic stresses, expressed in North-Eastern orientations, in contrast to the prevailing sublatitudinal orientations on the entire island. Studies have shown that in the south of Sakhalin, the border between the Amur and Okhotsk microplates runs along the West Sakhalin fault rather than the Central Sakhalin fault.


Keywords:
the Sakhalin, fault zone, neotectonics, neotectonic and modern stresses, sliсkenlines, boudinage, focal mechanisms of earthquakes, geodynamic regime, Amur and Okhotsk microplates border

For citation: Sim L.A., Kamenev P.A., Bogomolov L.M. New data on the latest stress state of the earth’s crust on Sakhalin Island (based on structural and geomorphological indicators of tectonic stress). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2020, vol. 4, no. 4, pp. 372–383. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2020.4.4.372-383

Для цитирования: Сим Л.А., Каменев П.А., Богомолов Л.М. Новые данные о новейшем напряженном состоянии земной коры острова Сахалин (по структурно-геоморфологическим индикаторам тектонических напряжений). Геосистемы переходных зон, 2020, т. 4, № 4, с. 372–383.
https://doi.org/10.30730/gtrz.2020.4.4.372-383


References

1. Voeykova O.A., Nesmeyanov S.A., Serebryakova L.I. 2007 . [Neotectonics and active faults of Sakhalin]. Moscow: Nauka, 187 p. (In Russ.).

2. Gzovsky М.V. 1975 . [Fundamentals of Tectonophysics]. Moscow: Nauka, 536 p. (In Russ.).

3. Golozubov V., Kasatkin S., Grannik V., Nechayuk A. 2012 . Deformation of the Upper Cretaceous and Cenozoic complexes of the West Sakhalin terrane. Geotectonics, 46: 333–351. doi:10.1134/S0016852112050020

4. Gushchenko O.I. 1979 . [The method of kinematic analysis of destruction structures in reconstruction of the tectonic stress fields]. In: Polya napryazheniy v litosfere [Stress fields in the lithosphere]. Moscow: Nauka, 7–25. (In Russ.).

5. Danilovich V.N. 1961 . Metod poyasov pri issledovanii treshchinovatosti, svyazannoy s razryvnymi smeshcheniyami [The method of belts in studies of fracturing associated with shearing]. Irkutsk: Pedagogicheskiy institut Irkutskogo gosudarstvennogo universiteta, 47 p. (In Russ.).

6. Zharov A.E. 2004 . Geologicheskoe stroenie i mel-paleogenovaya geodinamika yugo-vostochnogo Sakhalina [Geology and Cretaceous-Paleogene geodynamics of southeastern Sakhalin]. Yuzhno-Sakhalinsk: Yuzhno-Sakhalinsk Publ., 192 p. (In Russ.).

7. Kamenev P.A., Bogomolov L.M., Zakupin A.S. 2017 . On the stress state of the Sakhalin crust according to the data of drilling deep boreholes. Russian J. of Pacific Geology, 11(1): 25–33. doi:10.1134/S1819714017010043

8. Prytkov A.S., Vasilenko N.F. 2018 . Earth surface deformation of the Sakhalin Island from GPS data. Geodynamics & Tectonophysics, 9(2): 503–514. (In Russ.). https://doi.org/10.5800/GT-2018-9-2-0358

9. Rebetskiy Yu.L., Sim L.A., Marinin A.V. 2017 . Ot zerkal skol’zheniya k tektonicheskim napryazheniyam. Metody i algoritmy [From slickensides to tectonic stresses. Methods and algorithms]. Moscow: GEOS, 234 p. (In Russ.).

10. Rogozhin E.A., Reisner G.I., Besstrashnov V.M., Strom A.L., Borisenko L.S. 2002 . Seismotectonic settings of Sakhalin Island. Izvestiya, Physics of the Solid Earth, 38(3): 207–214.

11. Rozhdestvensky V.S. 1982 . The role of strike-slip in the structure of Sakhalin. Geotectonics, 16: 323–332.

12. Rozhdestvenskiy V.S. 1997 . [The role of strike-slips in formation of Sakhalin structure, hydrocarbon deposites and ore-bearing zones]. In.: Geologiya i geodinamika Sikhote-Alinskoy i Khokkaydo-Sakhalinskoy skladchatykh oblastey [Geology and Geodynamucs of the Sikhote-Alin and Hokkaido-Sakhalin folded regions] (ed. B.N. Piskunov). Yuzhno-Sakhalinsk: IMGiG DVO RAN [IMGG FEB RAS], 80–109.

13. Rozhdestvensky V.S. 2008 . Active rifting in the Japan and Okhotsk Seas and the tectonic evolution of the Central Sakhalin Fault zone in the Ceinozoic. Russian J. of Pacific Geology, 2(1): 15–24.

14. Sim L.A. 1982 . [Determination of the regional field by the data on the local stresses in separate areas]. Izvestiya vuzov. Geologiya i razvedka [Geology and exploration], 4: 35–40.

15. Sim L.A. 1991 . [Studies ot tectonic stresses based on geological indicators (methods, results, recommendations)]. Izvestiya vuzov. Geologiya i razvedka [Geology and exploration] , 10: 3–22.

16. Sim L.A., Bogomolov L.M., Bryantseva G.V. 2016 . [On possible border between the Amur and Okhotsk microplates on Sakhalin]. In.: Chetvertaya tektonofizicheskaya konferentsiya v IFZ RAN. Tektonofizika i aktual’nye voprosy nauk o Zemle, Moscow, 3–8 Oct. 2016 [The 4th Tectonophysical conference in the IPE RAS: Tectonophysics and topical problems in Earth sciences, Moscow, 3–8 October, 2016]. Moscow: IFZ RAN, vol. 1: 256–263.

17. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017a . Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237

18. Sim L.A., Bryantseva G.V., Savvichev P.A., Kamenev P.A. 2017b. Patterns of transition zone between Eurasian and North American plates (by example of stressed state of the Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 1(1): 3–22. (In Russ.). doi.org/10.30730/2541-8912.2017.1.1.003-022

19. Sim L.A., Bogomolov L.M., Kuchai O.A., Tataurova A.A. 2017c . Neotectonic and modern stresses of South Sakhalin. Russian Journal of Pacific Geology, 11(3): 223–235. https://doi.org/10.1134/s1819714017030058

20. Heidbach O., Rajabi M., Cui X., Fuchs K., Muller K., Reinecker B., Reiter J., Tingay K., Wenzel F., Xie F., Ziegler M., Zoback M.L., Zoback M.D. 2018 . The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. https://doi.org/10.1016/j.tecto.2018.07.007

21. Seno T., Sakurai T., Stein S. 1996. Can the Okhotsk Plate be discriminated from the North American plate? J. of Geophysical Research: Solid Earth, 101(B5): 11305–11315. http://dx.doi.org/10.1029/96JB00532

22. Teza G., Pesci А., Galgaro А. 2008. Grid_strain and grid_strain3: Software packages for strain field computation in 2D and 3D environments. Computers & Geosciences, 34(9): 1142–1153. doi:10.1016/j.cageo.2007.07.006

23. Tikhonov I.N., Kim Ch.U. 2010. Confirmed prediction of the 2 August 2007 MW 6.2 Nevelsk earthquake (Sakhalin Island, Russia). Tectonophysics, 485(1–4): 85–93. https://doi.org/10.1016/j.tecto.2009.12.002