Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2025, vol. 9, No. 4, pp. 398–409

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2025.9.4.398-409, https://www.elibrary.ru/xsyomt


Current state of springs and genetic diversity of high PCO2 mineral waters of Primorsky Krai
1Bragin, Ivan V., https://orcid.org/0000-0003-3280-716X, bragin_ivan@mail.ru

2Chelnokov, Georgy A., https://orcid.org/0000-0001-6020-9277, geowater@mail.ru

2Lavrushin, Vasily Yu., https://orcid.org/0000-0002-4815-7627, wll2@yandex.ru

1Pavlov, Andrey A., https://orcid.org/0000-0002-8793-4871, andreypavlov792@gmail.com

3Chelnokova, Berta I., https://orcid.org/0000-0001-7486-2760, berta-20@mail.ru

4,1Kharitonova, Natalia A., https://orcid.org/0000-0002-0855-3385, tchenat@mail.ru


1Far East Geological Institute of the Far Eastern Branch of RAS, Vladivostok, Russia
2Geological Institute of the Russian Academy of Sciences, Moscow, Russia
3Far Eastern Scientific Center of Physiology and Pathology of Respiration – Research Institute of Medical Climatology and Rehabilitation Treatment, Vladivostok, Russia
4Lomonosov Moscow State University, Moscow, Russia

Abstract PDF ENG . .PDF RUS Full text PDF RUS

Abstract. We present the results of a comprehensive study of high PCO2 mineral waters of Primorsky Krai, aimed at identifying their genesis and conditions of formation. For the first time, a joint analysis of the chemical and micro component composition of water, the gas phase (CO2, N2, CH4, H2, He, Ar), and stable isotopes of oxygen and hydrogen (δ18O, δ2H) was carried out for a number of poorly studied springs, gained either during this study or previously by our group. Three genetic groups of waters were identified based on hydrogeochemical data: 1) Ca-HCO3 type waters (Bolshoy Klyuch and Fabrichny springs) formed in terrigenous strata; 2) deep silicate-type waters (Pokrovsky and Glukhovka springs) associated with interaction with crystalline basement rocks and enriched with lithium, rubidium, and barium; 3) acidic waters of the sulfide oxidation zone (Nerobinsky spring), which are indicators of ore mineralization; 4) mixed-type waters showing the features of the three types described above. Gas-geochemical studies confirmed the predominance of CO2 of mantle genesis (>96.9 vol.%) and the redox environment. Unique anomalies were identified, such as a high methane content (up to 2.26 vol.%) in the Pokrovsky spring, indicating possible thermogenic processes. The isotopic composition of the waters (δ18O от –14.71 до –8.70 ‰, δ2H от –103.79 до –60.28 ‰) clearly indicates their meteoric origin from cold climate precipitation, while the shift relative to the global meteor line indicates intensive isotope exchange in the water–rock–gas system. The results of the study are of fundamental importance for understanding the fluid dynamics of the Sikhote-Alin subsurface and can be applied for expanding the mineral resource base, developing balneology, and conducting geological prospecting in the Primorsky region.


Keywords:
mineral water, high PCO2 waters, Primorsky Krai, water geochemistry

For citation: Bragin I.V., Chelnokov G.A., Lavrushin V.Yu., Pavlov A.A., Chelnokova B.I., Kharitonova N.A. Current state of springs and genetic diversity of high PCO2 mineral waters of Primorsky Krai. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 4, pp. 398–409. (In Russ.).
https://doi.org/10.30730/gtrz.2025.9.4.398-409, https://www.elibrary.ru/xsyomt

Для цитирования: Брагин И.В., Челноков Г.А., Лаврушин В.Ю., Павлов А.А., Челнокова Б.И., Харитонова Н.А. Современное состояние источников и генетическое разнообразие углекислых минеральных вод Приморского края. Геосистемы переходных зон, 2025, т. 9, № 4, с. 398–409.
https://doi.org/10.30730/gtrz.2025.9.4.398-409, https://www.elibrary.ru/xsyomt


References

1. Luchaninova V.N., Kargina A.P., Rudich V.P. 1992. [Mineral waters of the Primorsky Krai]. Vestnik of the FEB RAS, 3/4: 125–129. (In Russ.).

2. Chelnokov A.N. 1997. [Underground mineral waters of Primorye (distribution, resources, and formation features) ]: thesis … cand. of sci. (Geology and Mineralogy). Far Eastern Geological Institute of the FEB RAS, Vladivostok, 165 p. (In Russ.).

3. Chudaev O.V. 2003. Composition and origin of the recent hydrothermal systems in the Far East Russia. Vladivostok: Dalnauka, 216 p. (In Russ.).

4. Shvartsev S.L., Kharitonova N.A., Lepokurova O.E., Chelnokov G.A. 2017. Genesis and evolution of high PCO2 groundwaters of the Mukhen SPA (Russian Far East). Russian Geology and Geophysics, 58(1): 48–59.

5. Chelnokov G.A., Bragin I.V., Kharitonova N.A., Alexandrov I.A., Ivin V.V., Chelnokova B.I. 2019. Geochemistry and conditions of the formation Ul’sk thermal spring (Coast of the Okhotsk, Khabarovsk Krai). Russian Journal of Pacific Geology, 13: 163–175. https://doi.org/10.1134/s1819714019020040

6. Bragin I.V., Pavlov A.A., Chelnokov G.A., Lavrushin V.Yu., Kharitonova N.A. 2024. The composition and formation conditions of nitrogen–siliceous thermal waters of the Amgu Group (Northeast of the Primorsky Krai). Russian Journal of Pacific Geology, 18: 198–209. https://doi.org/10.1134/s1819714024020039

7. Chudaeva V.A., Chudaev O.V., Chelnokov A.N., Edmunds W.M., Shand P. 1999. Mineral waters of Primorye (Chemical aspect). Vladivostok: Dalnauka, 160 p. (In Russ.).

8. Chelnokov G.A., Kharitonova N.A. 2008. High PCO2 mineral waters of the South of Far East of Russia. Vladivostok: Dalnauka, 165 p. (In Russ.).

9. Chudaev O.V., Kharitonova N.A., Chelnokov G.A., Bragin I.V. 2016. [Hydromineral resources of Primorsky Krai]. Vestnik of the FEB RAS, 5(189): 11–20. (In Russ.).

10. Khanchuk A.I. (Ed.) 2006. Geodynamics, magmatism, and metallogeny of Eastern Russia: in 2 vol. Vol. 1. Vladivostok: Dalnauka, 572 p. (In Russ.).

11. Khanchuk A.I., Kemkin I.V., Kruk N.N. 2016. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120: 117–138. https://doi.org/10.1016/j.jseaes.2015.10.023

12. Kharitonova N.A., Vakh E.A., Chelnokov G.A., Chudaev O.V., Aleksandrov I.A., Bragin I.V. 2016. REE geochemistry in groundwater of the Sikhote Alin fold region (Russian Far East). Russian Journal of Pacific Geology, 10(2): 141–154. https://doi.org/10.1134/S1819714016020032

13. Chelnokov G.A., Lavrushin V.Yu., Bragin I.V., Kharitonova N.A., Bushkareva K.Yu., Pavlov A.A., Chelnokova B.I. 2023. Radon concentrations in mineral waters of the Sikhote-Alin, Primorsky Krai. Russian Journal of Pacific Geology, 17: 284–296. https://doi.org/10.1134/s1819714023030028

14. Dansgaard W. 1964. Stable isotopes in precipitation. Journal Earth Sciences Tellus, 16(4): 436–468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x

15. Craig H. 1961. Isotopic variations in meteoric waters. Science, 133(3465):1702–1703. http://dx.doi.org/10.1126/science.133.3465.1702

16. Kharitonova N.A., Chelnokov G.A., Bragin I.V., Vakh E.A. 2012. Isotopic composition of natural waters of the southern Far East, Russian. Russian Journal of Pacific Geology, 31(2): 75–86. (In Russ.).

17. Kurita N., Yoshida N., Inoue G., Chayanova E.A. 2004. Modern isotope climatology of Russia: A first assessment. Journal of Geophysical Research, 109. https://dx.doi.org/10.1029/2003JD003404