Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2025, vol. 9, No. 4, pp. 361–369

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2025.9.4.361-369, https://www.elibrary.ru/yeqyta


Dependence of the diffuse attenuation coefficient for underwater photosynthetically active radiation on chlorophyll-a and colored dissolved organic matter in Peter the Great Bay
1Gorbov, Maxim I., https://orcid.org/0009-0001-0057-0869, maxgorbov@.ru
1Salyuk, Pavel A., https://orcid.org/0000-0002-3224-710X, psalyuk@poi.dvo.ru
2Pavlov, Andrey N., https://orcid.org/0000-0001-6099-1174, anpavlov@iacp.dvo.ru
1Garevskikh, Georgiy P., https://orcid.org/0009-0002-8528-6062, garevskih.gp@poi.dvo.ru

1V.I. Il’ichev Pacific Oceanological Institute, FEB RAS, Vladivostok, Russia
2Institute of Automation and Control Processes, FEB RAS, Vladivostok, Russia

Abstract PDF ENG. .PDF RUS Full text PDF RUS

Abstract. The study is devoted to solving the problem of determining regional relationships between the characteristics of the underwater light field and the bio-optical characteristics of the seawater column. The aim of the study is to determine the influence of chlorophyll-a (Chl-a) (C) and colored dissolved organic matter (CDOM) (D) concentrations on the variability of underwater photosynthetically active radiation (PAR) for certain areas of Peter the Great Bay in the Sea of Japan (Amur Bay, Ussuri Bay, and Posyet Bay). To this end, the dependence of the diffuse attenuation coefficient (KPAR) of the underwater PAR on each of the specified bio-optical characteristics in these areas was analyzed. The experimental data were obtained by measuring chlorophyll-a and CDOM concentrations using the SeaBird SBE 19-plus multiparameter probe with the Licor Li-193 spherical PAR sensor and calibrated WETStar fluorescent sensors. Three types of models were used in the study: KPAR was calculated only through C (mC), only through D (mD), and simultaneously through C and D (mCD). It was found that in Amur Bay and Ussuri Bay, KPAR variability is primarily influenced by variations in CDOM content, while in Posyet Bay, it is determined by variations in Chl-a concentration. Incorporating both Chl-a concentration and CDOM concentration (mCD model) in all analyzed cases increases the accuracy of KPAR estimation from measurements of optically active components by 30–40 %. For the general model, this approach improves accuracy by approximately twofold compared to using Chl-a concentration alone. The application of the general mCD model for different areas of Peter the Great Bay yielded KPAR estimates with the following relative root mean square errors: 23.6 % (Amur Bay), 19.3 % (Ussuri Bay), 15.5 % (Posyet Bay). It is advisable to use the general mCD model, as it demonstrates greater adaptability to regional conditions in Peter the Great Bay.


Keywords:
underwater photosynthetically active radiation, colored dissolved organic matter, chlorophyll-a, bio-optical characteristics, optically active constituents, the Sea of Japan

For citation: Gorbov M.I., Salyuk P.A., Pavlov A.N., Garevskikh G.P. Dependence of the diffuse attenuation coefficient for photosynthetically active radiation on chlorophyll-a and colored dissolved organic matter in Peter the Great Bay. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 4, pp. 361–369. (In Russ.).
https://doi.org/10.30730/gtrz.2025.9.4.361-369, https://www.elibrary.ru/yeqyta

Для цитирования: Горбов М.И., Салюк П.А., Павлов А.Н., Гаревских Г.П. Анализ зависимости показателя ослабления подводной фотосинтетически активной радиации от концентрации хлорофилла-а и окрашенных растворенных органических веществ в отдельных районах залива Петра Великого. Геосистемы переходных зон, 2025, т. 9, № 4, с. 361–369.
https://doi.org/10.30730/gtrz.2025.9.4.361-369, https://www.elibrary.ru/yeqyta


References

1. Churilova T., Suslin V., Moiseeva N., Efimova T. 2020. Phytoplankton bloom and photosynthetically active radiation in coastal waters. Journal of Applied Spectroscopy, 86: 1084–1091. https://doi.org/10.1007/s10812-020-00944-0

2. Ryther J. 1956. Photosynthesis in the ocean as a function of light intensity. Limnology and Oceanography, 1(1): 61–70. https://doi.org/10.4319/lo.1956.1.1.0061

3. Westberry T.K., Silsbe G.M., Behrenfeld M.J. 2023. Gross and net primary production in the Global Ocean: An ocean color remote sensing perspective. Earth-Science Reviews, 237: 104322. https://doi.org/10.1016/j.earscirev.2023.104322

4. Nechad B., Ruddick K. 2010. A model of diffuse attenuation of the downwelling irradiance for ecosystem models. Remote Sensing of the Coastal Ocean, Land, and Atmosphere Environment, vol. 7858. https://doi.org/10.1117/12.872979

5. Mobley C.D., Chai F., Xiu P., Sundman L.K. 2015. Impact of improved light calculations on predicted phytoplankton growth and heating in an idealized upwelling-downwelling channel geometry. Journal of Geophysical Research: Oceans, 120(2): 875–892. https://doi.org/10.1002/2014JC010588

6. Glukhovets D.I., Salyuk P.A., Sheberstov S.V., Vazyulya S.V., Saling I.V., Stepotchkin I.E. 2001. [Retrieval of the full complex of optical characteristics for heat content assessing in the southern part of the Barents Sea in June 2021]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 18(5): 214–225.

7. Xing X., Lee Z., Xiu P., Chen S., Chai F. 2022. A dual-band model for the vertical distribution of photosynthetically available radiation (PAR) in stratified waters. Frontiers in Marine Science, 9: 928807. https://doi.org/10.3389/fmars.2022.928807.

8. Xing X., Boss E. 2021. Chlorophyll-based model to estimate underwater photosynthetically available radiation for modeling, in-situ, and remote-sensing applications. Geophysical Research Letters, 48. https://doi.org/10.1029/2020GL092189

9. Renosh P.R. et al. 2023. Vertically resolved Global Ocean light models using machine learning. Remote Sensing, 15(24): 5663. https://doi.org/10.3390/rs15245663

10. Latushkin A.A., Salyuk P.A., Suslin V.V., Martynov O.V. 2023. A regional algorithm for calculating the photic zone thickness from the vertical profile of the beam attenuation coefficient on the example of the northwestern part of the Weddell Sea. Oceanology, 63(4): 545–549. https://doi.org/10.31857/s0030157423040081

11. IOCCG. 2000. Remote sensing of ocean color in coastal, and other optically complex waters (Ed. S. Sathyendranath). Dartmouth, Canada: IOCCG. (Reports of the International Ocean-Color Coordinating Group; no. 3).

12. Sempere R., Para J., Tedetti M., Charriere B., Mallet M. 2015. Variability of solar radiation and CDOM in surface coastal waters of the northwestern Mediterranean Sea. Photochemistry and Photobiology, 91(4): 851–861. https://doi.org/10.1111/php.12434

13. Gohin F., Loyer S., Lunven M., Labry C., Froidefond J.-M., Delmas D., Herbland A. 2005. Satellite-derived parameters for biological modeling in coastal waters: Illustration over the eastern continental shelf of the Bay of Biscay. Remote Sensing of Environment, 95(1): 29–46. https://doi.org/10.1016/j.rse.2004.11.007

14. Bukin O.A., Saluk P.A., Maior A.Yu., Pavlov A.N. 2005. Studies of organic matter reproduction in phytoplankton cells by laser-induced fluorescence method. Atmospheric and Oceanic Optics, 18(11): 879–885.

15. Churilova T.Ya., Suslin V.V., Sosik Kh.M. 2010. Spectral model of underwater irradiance in the Black Sea. Physical Oceanography (2009), 19: 366–378. https://doi.org/10.1007/s11110-010-9060-8

16. Kirk J. 2010. Light and photosynthesis in aquatic ecosystems. 3rd ed. UK: Cambridge University Press, 662 p. https://doi.org/10.1017/cbo9781139168212