| Abstract PDF ENG. .PDF RUS | Full text PDF RUS |
Abstract. This article presents data on the neotectonics and seismicity of the Crimean Peninsula. Using two versions of the structural-geomorphological method – a manual version and a version with the SimSGM software – the neotectonic stress state of Steppe Crimea and adjacent territories was characterized in relation to the peninsula's current seismicity. Areas of fracture concentration of the tension and shear types were identified. The results show that the stress field is characterized by a strike-slip pattern, with a predominantly northeast-oriented compression axis and the least pronounced northwest-trending compression. The relief and its main features are expressed as heterogeneities with an orthogonal strike for Steppe Crimea and a diagonal strike for Mountainous Crimea. The obtained data on the distribution of shear and tension megafractures and seismicity are essential for understanding the formation of hazardous geological processes and are also useful in the design of civil structures and the exploration of ore and oil deposits, as blocks with tension fractures are more fluid-permeable and subject to more intense failure. The low seismic activity is likely due to, firstly, the small number of seismic stations and, secondly, the release of accumulated crustal stresses in the Black Sea basin.
Keywords:
Steppe Crimea, Crimean Peninsula, neotectonic and modern stresses, fault tectonics, structural-geomorphological method, SimSGM program
For citation: Sim L.A., Gordeev N.A., Sycheva N.A. Neotectonic and modern stresses of Steppe Crimea. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 4, pp. 345–360. (In Russ.).
https://doi.org/10.30730/gtrz.2025.9.4.345-360, https://www.elibrary.ru/gwpjdq
Для цитирования: Сим Л.А., Гордеев Н.А., Сычева Н.А. Неотектонические и современные напряжения Степного Крыма. Геосистемы переходных зон, 2025, т. 9, № 4, с. 345–360.
https://doi.org/10.30730/gtrz.2025.9.4.345-360, https://www.elibrary.ru/gwpjdq
References
1. Geology of USSR. (ed. M.V. Muratov). 1969. Vol. 33. [Crimea. Geological description ]. Moscow: Nedra, 576 p. (In Russ.).
2. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. 2017. The active faults of Eurasia database. Geodynamics & Tectonophysics, 8(4): 711–736. (In Russ.). https://doi.org/10.5800/GT-2017-8-4-0314
3. Ovsyuchenko А.N., Vakarchuk R.N., Korzhenkov A.M., Larkov A.S., Sysolin А.I., Rogozhin E.A., Marahanov A.V. 2019. Active faults of the Kerch’s Peninsula: new results. Doklady Earth Sciences, 488(2): 1152–1156. doi:10.1134/S1028334X19100076
4. Wolfman Yu.M. 2021. [Features of the processes of Alpine tectonic rupture and seismogenesis in the Crimean-Black Sea region ]: Dissertation of Doctor of Geological and Mineralogical Sciences, 371 p. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow. (In Russ.).
5. Kats Ya.G., Makarova N.V., Kozlov V.V., Trofimov D.M. 1981. [Structural and morphological analysis of Crimea based on space imagery interpretation]. Izv. vuzov. Geologiya i razvedka = Geology and Exploration, 3: 8–20. (In Russ.).
6. Makarova N.V., Makeev V.M., Galitskaya I.V., Sukhanova T.V. 2018. Neotectonics of Plain Crimea in connection with problems of water supply. Bulletin of Moscow Society of Naturalists. Geological Series, 93(3): 3–11. (In Russ.).
7. Gordienko V.V., Gordienko I.V., Zavgorodnjaja O.V. 2015. Recent activization and heat field of the South-Ukrainian monocline and the Scyphian plate. Доповiдi НАН України, 7: 85–90.
8. Pustovitenko B.G., Kulchitsky V.E., Sukhoruchenko S.K., Klyanchin A.I. 2020. [Organization and first results of seismic observations in the northwestern part of the Crimea territory]. Uchenyye zapiski Krymskogo federalnogo universiteta imeni V.I. Vernadskogo. Geografiya. Geologiya, 6(72), 4: 144–169. (In Russ.).
9. Zakharov V.S., Simonov D.A., Bryantseva G.V., Kosevich N.I. 2019. Self-similarity properties of the Kerch Peninsula stream network and their comparison with the results of structural and geomorphological analysis. Izv., Atmospheric and Oceanic Physics, 55: 721–730. https://doi.org/10.1134/s0001433819070120
10. Volfman Yu.M., Pustovitenko B.G., Kolesnikova E.Ya. 2022. [New results of the tectonophysical analysis of the focal mechanisms of earthquakes in the Crimean-Black Sea region]. Uchenyye zapiski Krymskogo federalnogo universiteta imeni V.I. Vernadskogo. Geografiya. Geologiya, 8(74), 4: 163–206. (In Russ.).
11. New catalogue of strong earthquakes on the territory of the USSR from ancient times to 1975. 1977. (eds N.V. Kondorskaya, N.V. Shebalin). Moscow: Nauka, 536 p. (In Russ.).
12. Pustovitenko B.G., Kulchitsky V.E., Goryachun A.V. 1989. [Earthquakes of the Crimean-Black Sea region (instrumental observation period 1927–1986) ]. Kyiv: Naukova Dumka, 192 p.
13. Rautian T.G., Khalturin V.I., Fujita K., Mackey K.G., Kendall A.D. 2007. Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales. Seismological Research Letters, 78(6): 579–590. doi:10.1785/gssrl.78.6.579
14. Kalinyuk I.V., Svidlova V.A., Bondar M.N. 2019. Seismicity of the Crimea in 2018. Uchenyye zapiski Krymskogo federalnogo universiteta imeni V. I. Vernadskogo. Geografiya. Geologiya, 5(71), S4: 7–75. (In Russ.).
15. Tari E., Sahin M., Barka A., Reilinger R., King R., McClusky S., Prilepin M. 2000. Active tectonics of the Black Sea with GPS. Earth Planets Space, 52: 747–751. https://doi.org/10.1186/bf03352276
16. Milyukov V.K., Mironov A.P., Rogozhin E.A., Steblov G.M. 2015. Velocities of contemporary movements of the Northern Caucasus estimated from GPS observations. Geotectonics, 49(3): 210–218. https://doi.org/10.1134/s0016852115030036
17. Mironov A.P., Milyukov V.K., Steblov G.M. 2016. [Modern movements of the Northern Caucasus and Crimea based on GPS observations]. In: Chetvertaya tektonofizicheskaya konferentsiya v IFZ RAN. Tectonophysics and current issues of Earth sciences: Materialy dokladov, 1: 168–170. (In Russ.).
18. Yubko V.M., Glazyrin E.A., Shestopalov V.L. 2016. [Experience in measuring modern crustal movements in the Azov-Black Sea coast of the Russian Federation]. In: Chetvertaya tektonofizicheskaya konferentsiya v IFZ RAN. Tectonophysics and current issues of Earth sciences: Materialy dokladov, 1: 298–303. (In Russ.).
19. Glazyrin E.A., Shestopalov V.L. 2018. Modern movements of the Earth's surface of the Russian segment of the Black Sea coast according to GPS observations. In: (Lisitsyn A.P., ed.) The Black Sea system. Moscow: Scientific World, Cpt. 1, pt. 1.3, p. 76–84. (In Russ.).
20. Gordeev N.A., Molchanov A.B. 2019. Automation of L.A. Sim structural-geomorphological method for reconstruction of shear tectonic stresses. Geoinformatika, 2: 25–33. (In Russ.).
21. Molchanov A.B., Gordeev N.A. 2021. Application of computer vision algorithms in tectonophysics. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN, 18: 301–304. (In Russ.). https://doi.org/10.31241/FNS.2021.18.056
22. Sim L.A. 2000. [The influence of global tectogenesis on the recent stress state of European platforms]. In: M.V. Gzovskii and the progress in tectonophysics. Moscow: Nauka, p. 326–350. (In Russ.).
23. Sim L.A. 1991. Study of tectonic stresses using geological indicators: Methods, results, recommendations. Izv. vuzov. Geologiya i razvedka = Geology and Exploration, 1(10): 3–22. (In Russ.).
24. Gzovsky M.V. 1975. Fundamentals of tectonophysics. Moscow: Nauka, 536 p. (In Russ.).
25. Bondar I.V., Gordeev N.A. 2023. Kinematics of the Imandra-Kolvitsky fault in the area of Lake Srednee Luvengskoye (Kola Peninsula). Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN, 20: 497–503. (In Russ.). https://doi.org/10.31241/FNS.2023.20.064
26. Yudin V.V. 2001. Geological structure of Crimea based on actualistic geodynamics: Appendix to the scientific-practical, discussion-analytical collection "Issues of the development of Crimea". Simferopol', 46 p. (In Russ.).
27. Peive A.V., Belyaevsky N.A., Suvorov A.I., Unksov V.A. 1977. [Faults and horizontal movements of structures in the USSR ]. Moscow: Nauka, 128 p. (In Russ.).