Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2025, vol. 9, No. 3, pp. 325–331

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2025.9.3.325-331, https://www.elibrary.ru/stwzom (In English)


Methodical experiment on the use of zeolitized tuffs to detect low concentrations of hydrocarbons in an environment simulating bottom sediments
Bulgakov, Rustam F., https://orcid.org/0000-0001-9095-3785, r.bulgakov@imgg.ru
Bogomolov, Leonid M., https://orcid.org/0000-0002-9124-9797, bleom@mail.ru

Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG. .PDF RUS Full text PDF ENG. .PDF RUS

Abstract. This paper presents the results of a methodical (trial) experiment for conducting in-kind conditions on capturing microseepage hydrocarbon molecules by sorption, which amount is sufficient for the certificate of the presence of oil and gas-bearing formations. The experiment simulating hydrocarbon accumulation in traps with sorbents was organized and conducted at the Institute of Marine Geology and Geophysics, Far Eastern Branch of the Russian Academy of Sciences as a step before the installation of traps in natural conditions near a hydrocarbon deposit. Zeolitized tuffs from the Ogonkovsky site of the Lyutogskoye deposit (Sakhalin Island) with a 50 % zeolite content, as well as the peats were used as sorbents. The sorbents were kept for 5 months in an artificial container containing soil (lofts), seawater, and a small additive of a hydrocarbon mixture. The obtained results confirmed the possibility of detecting low concentrations of hydrocarbons in an environment similar to bottom sediments using traps with a zeolite sorbent. The advantage of this sorbent as an indicator of hydrocarbon microseepage over a deposit compared to a peat sorbent was revealed.


Keywords:
microseepage, geochemical methods, sorption, geochemical anomalies, zeolites

For citation: Bulgakov R.F., Bogomolov L.M. Methodical experiment on the use of zeolitized tuffs to detect low concentrations of hydrocarbons in an environment simulating bottom sediments. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 3, pp. 325–331.
https://doi.org/10.30730/gtrz.2025.9.3.325-331, https://www.elibrary.ru/stwzom (In English)

Для цитирования: Булгаков Р.Ф., Богомолов Л.М. Методический эксперимент по применению цеолитизированных туфов для обнаружения низких концентраций углеводородов в среде, моделирующей придонные осадки. [Электронный ресурс]. Геосистемы переходных зон, 2025, т. 9, № 3
https://doi.org/10.30730/gtrz.2025.9.3.325-331, https://www.elibrary.ru/stwzom (In English)


References

1. Schumacher D. 2012. Pre-drill prediction of hydrocarbon charge: microseepage – based prediction of charge and post-survey drilling results. GeoConvention 2012 abstract archive. May 14–18, 2012, Calgary, AB, Canada. URL: https://geoconvention.com/2012-abstract-archive/ (accessed 01.06.2025).

2. Klusman R.N., Said M.A. 1996. Comparison of microseepage mechanisms of light hydrocarbons. In: Schumacher D., Abrams M. (Eds) Hydrocarbon migration and its near-surface expression. The American Association of Petroleum Geologists, Tulsa, Oklahoma, USA, p. 157–168.

3. Wang G., Tang J., Tang Yu., Li X., Li J., Yang Jun, Huang X. 2017. Simulation of microseepage of light hydrocarbon of different occurrence states in strata above reservoirs. Petroleum Geology & Experiment, 39(2): 261–266. doi:10.11781/sysydz201702261

4. Wang G., Tang Yuping, Cheng T., Tang Junhong, Fan M., Lu Li. 2016. Laboratory simulation of the formation process of surface geochemical anomalies applied to hydrocarbon exploration. Acta Geologica Sinica – English Edition, 90(6): 2149–2162. https://doi.org/10.1111/1755-6724.13028

5. Wang G., Qian Q., Kluswman R.W., Wang M., Han Zuozhen. 2023. Experimental study on vertical light hydrocarbon microseepage mechanisms. Petroleum Science and Technology, 41: 2257–2276. https://doi.org/10.1080/10916466.2022.2108051

6. Huang Ch., Wang G., Lu Li, Yang Fan, Gao Junyang. 2013. Micro-seepage of hydrocarbon gas in mudstone and sandstone and its significance for oil and gas exploration. Petroleum Geology & Experiment, 35(4). doi:10.11781/sysydz201304445

7. Schumacher D. 2001. The dynamic nature of hydrocarbon microseepage: An overview. In: Near-surface hydrocarbon migration: Mechanisms and seepage rates, September 16–19, 2001, Vancouver, Bc, Canada. AAPG Hedberg Conferenc. URL: https://www.researchgate.net/publication/242202285.

8. Ageenkov E.V., Sitnikov A.A., Pesterev I.Y. 2018. Display of induce polarization different types in electromagnetic measurements by the line. Geophysics, 2: 37–43. (In Russ.). URL: http://www.ipgg.sbras.ru/ru/publications/ibc/2018/gf-2018-1-37-43.pdf (accessed 07.08.2025).

9. Bulgakov R.F., Bogomolov L.M. 2024. Application of sorbents in geochemical prospecting methods. In: X International scientific and technical conference. Development of oil and gas resources of the Russian shelf: Arctic and Far East (OMNR-2024), June 19–21, 2024: report summary. Moscow: Gazprom VNIIGAZ, p. 17. (In Russ.).

10. Gorokhov V.K., Dunichev V.M., Mel'nikov O.A. 1982. Sakhalin zeolites. Vladivostok: Dal'nevostochnoye knizhnoye izdatel'stvo, 106 p. (In Russ.)

11. Savinsky N.G. 2014. [Microwave heating of intercalated graphite]. Vestnik Yaroslavskogo gosudarstvennogo universiteta im. P.G. Demidova. Seriya Yestestvennye i tekhnicheskiye nauki, 1: 76–87. (In Russ.).