Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2025, vol. 9, No. 3, pp. 238–255

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2025.9.3.238-255, https://www.elibrary.ru/dcgjno


Dynamic parameters of earthquake sources that occurred on Sakhalin Island in 1978–2024
@Sychev, Vladimir N., https://orcid.org/0000-0001-7508-9087, koitash@mail.ru
Bogomolov, Leonid M., https://orcid.org/0000-0002-9124-9797, bleom@mail.ru
Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia, Ðîññèÿ

Abstract PDF ENG. .PDF RUS Full text PDF RUS

Abstract. The values of dynamic parameters (DP) for 110 earthquakes with magnitudes MW = 4.7–7.7 that occurred on Sakhalin in 1978–2024 were obtained. A scalar seismic moment was previously determined for these earthquakes. To estimate the other DP: the radii of the foci, the shear stress drop, and the reduced seismic energy a phenomenological approach was used based on the presence of regression, which links the source radius and the values of the scalar seismic moment for earthquakes within the Sakhalin-Kuril region. The results of the study were summarized in a data table. Distribution maps of the averaged values of these DP across the studied region were constructed. Thus, the amount of data on the stress drop and reduced seismic energy for Sakhalin earthquakes has been significantly increased.


Keywords:
seismicity, earthquake, catalog, scalar seismic moment, source radius, stress drop, Sakhalin Island, North-West of the Pacific

For citation: Sychev V.N., Bogomolov L.M. Dynamic parameters of earthquake sources that occurred on Sakhalin Island in 1978–2024. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 3, pp. 238–255. (In Russ.).
https://doi.org/10.30730/gtrz.2025.9.3.238-255, https://www.elibrary.ru/dcgjno

Äëÿ öèòèðîâàíèÿ: Ñû÷åâ Â.Í., Áîãîìîëîâ Ë.Ì. Äèíàìè÷åñêèå ïàðàìåòðû î÷àãîâ çåìëåòðÿñåíèé íà îñòðîâå Ñàõàëèí â 1978–2024 ãã. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2025, ò. 9, ¹ 3, ñ. 238–255.
https://doi.org/10.30730/gtrz.2025.9.3.238-255, https://www.elibrary.ru/dcgjno


References

1. Zavyalov A.D. 2006. [ Medium-term earthquake forecast. Fundamentals, methodology, implementation ]. Moscow: Nauka, 242 p. (In Russ.).

2. Tikhonov I.N., Rodkin M.V. 2012. The current state of art in earthquake prediction, typical precursors, and experience in earthquake forecasting at Sakhalin Island and surrounding areas. In: Earthquake Research and Analysis – Statistical Studies, Observations and Planning , Ch. 5, p. 43–78. https://doi.org/10.5772/28689

3. Tarakanov R.Z., Tikhonov I.N. 2011. [Sakhalin seismology: development and some results]. Vestnik of the FEB RAS, 6: 34–42. (In Russ.).

4. Tikhonov I.N., Mikhaylov V.I., Malyshev A.I. 2017. Modeling the Southern Sakhalin earthquake sequences preceding strong shocks for short-term prediction of their origin time. Russian J. of Pacific Geology, 11(1): 1–10. https://doi.org/10.1134/s1819714017010092

5. Druzhin G.I., Marapulets Yu.V., Cherneva N.V., Isaev A.A., Solodchuk A.A. 2017. Acoustic and electromagnetic emissions preceding the earthquake in Kamchatka. Doklady Earth Sciences, 472: 215–219. https://doi.org/10.1134/S1028334X17020118.

6. Zakupin A.S., Boginskaya N.V. 2022. Medium-term earthquake forecasts by the LURR method on the example of the strongest earthquakes of the 21st century. Lithosphere, 22(6): 872–881. (In Russ.). https://doi.org/10.24930/1681-9004-2022-22-6-872-881

7. Gavrilov V.A., Panteleev I.A., Descherevskii, Lander A.V., Morozova Yu.V., Buss Yu.Yu., Vlasov Yu.A. 2020 . Stressstrain state monitoring of the geological medium based on the multi-instrumental measurements in boreholes: Experience of research at the Petropavlovsk-Kamchatskii geodynamic testing site (Kamchatka, Russia). Pure Applied Geophysics, 177(1): 397–419. https://doi.org/10.1007/s00024-019-02311-3

8. Burymskaya R.N. 2001. [Spectral composition of radiation and the source parameters of earthquake in the northwestern Pacific during 1969–1996]. In: A.I. Ivashchenko (ed.) [ Dynamics of source zones and forecast of the strong earthquakes in the Northwestern Pacific ]. Yuzhno-Sakhalinsk: IMGG FEB RAS, vol. 1, p. 48–67. (In Russ.).

9. Brune J.N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. J. of Geophysical Research, 75(26): 4997–5009. https://doi.org/10.1029/jb075i026p04997

10. Brune J.N. 1971. Corrections. J. of Geophysical Research, 76: 5002.

11. Sycheva N.A., Bogomolov L.M. 2020. On the stress drop in North Eurasia earthquakes source-sites versus specific seismic energy. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 417–446. https://doi.org/10.30730/gtrz.2020.4.4.393-416.417-446

12. Konovalov A.V., Nagornykh T.V., Safonov D.A. 2014. [ Modern research on the mechanisms of earthquake foci on Sakhalin Island ]. Vladivostok: Dal’nauka, 251 p.

13. Tataurova À.A. 2015. Stress and strain fields based on data on crustal earthquake mechanisms in Sakhalin Island. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 3(27): 93–101. (In Russ.).

14. Scholz C.H. 2002. The mechanics of earthquakes and faulting. Cambridge: Cambridge University Press, 496 p.

15. Madariaga R. 2011. Earthquake scaling laws. In: R.A. Meyers (ed.) Extreme environmental events: Complexity in forecasting and early warning. Springer, 364–383. https://doi.org/10.1007/978-1-4419-7695-6_22

16. Kocharyan G.G. 2016. Geomechanics of faults. Ìoscow: GEOS, 424 p. (In Russ.).

17. Riznichenko Yu.V. 1985. [ Problems of seismology: Selected works]. Moscow: Nauka, 408 p. (In Russ.).

18. Kanamori H. 1977. The energy release in great earthquakes. J. of Geophysical Research, 82(20): 2981–2987.

19. Klyuchevskii A.V., Demjanovich V.M. 2002. Source amplitude parameters of strong earthquakes in the Baikal seismic zone. Izv., Physics of the Solid Earth, 38(2): 139–148.

20. Madariaga R. 1979. On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity. J. of Geophysical Research, 84: 2243–2250. https://doi.org/10.1029/jb084ib05p02243

21. Kanamori H., Brodsky E.E. 2004. The physics of earthquakes. Reports on Progress in Physics. 67: 1429–1496.

22. Kaneko Y, Shearer P.M. 2014. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197: 1002–1015. https://doi:10.1093/gji/ggu030.

22. Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. 2022. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset. Earth System Science Data, 14: 4489-4503.

23. Yunga S.L. 1990. [ Methods and results of studying seismic tectonic deformations ]. Moscow: Nauka, 191 p. (In Russ.).

24. Sycheva N.A., Bogomolov L.M., Kuzikov S.I. 2020. [ Computational technologies in seismological studies (on the example of KNET, Northern Tian Shan )] Yuzhno-Sakhalinsk: IMGG FEB RAS, 358 p. (In Russ.). https://dx.doi.org/10.30730/978-5-6040621-6-6.2020-2

25. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237

26. Sim L.A., Kamenev P.A., Bogomolov L.M. 2020. New data on the latest stress state of the earth’s crust on Sakhalin Island (based on structural and geomorphological indicators of tectonic stress). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 372–383. (In Russ.). https://doi.org/10.30730/gtrz.2020.4.4.372-383

27. Tikhomirov V.M. 1970. [ Rock density and geological mapping in Sakhalin conditions ]. Ìoscow: Nauka, 111 p. (In Russ.).

28. Patrikeev V.N., Lomtev V.L. 2016. Northern Sakhalin faults: structure peculiarities and seismic hazard. Geology and Mineral Resources of World Ocean, 3: 44–58. (In Russ.).

29. Soloviev S.L., Tikhonov I.N., Kozhurin A.I. 2014. Refinement of background seismicity within the site location of the power plant "Sakhalinskaja GRES-2" (Sakhalin Island). Problems of Engineering Seismology, 41(2): 60–76. (In Russ.).

30. Dobrynina A.A. 2009. Source parameters of the earthquakes of the Baikal Rift System. Izv., Physics of the Solid Earth, 45(12): 1093–1109.

31. Ayvaz’an S.A., Mkhitar’an V.S. 2001. [ Applied statistics. Fundamentals of econometrics ]: in 2 vol. Moscow: Yuniti-Dana, 1088 p. (In Russ.).

32. Magnus YA.R., Katyshev P.K., Peresetskiy A.A. 2004. [ Econometrics: The initial course ]. Moscow: Delo Publ., 576 p. (In Russ.).