
Abstract PDF ENG. .PDF RUS | Full text PDF RUS |
Abstract. Due to methodological changes in the work of the Sakhalin Branch of the Federal Research Center “Geophysical Survey of the Russian Academy of Sciences” (SB FRC GS RAS), it became necessary to clarify the transition relationships between the energy characteristics of earthquakes in the Sakhalin region used for the magnitude unification of the catalog. To obtain the transition relationships, a sample for the period from 2017 to October 2024 was used from the database of the “Yuzhno-Sakhalinsk” regional information processing center, which is a part of the SB FRC GS RAS. Using the generalized orthogonal regression method, the relationships linking the magnitude of crustal (h < 40 km) earthquakes ML and the energy classes KР and KC were calculated, as well as the magnitudes ML and MPVA separately for crustal and deep-focus (h = 250–600 km) earthquakes in the region. The relationship between ML and the magnitude of the Japan Meteorological Agency Mj was also obtained. It was revealed that for shallow Sakhalin earthquakes Mj ≈ ML; for deep-focus earthquakes, an underestimation of the magnitude ML relative to Mj was noted. As the observational data accumulates, it is assumed that the obtained relationships will be refined.
Keywords:
earthquake, magnitude scales, regression relationships, Sakhalin region
For citation: Safonov D.A. New transition relationships for the energy characteristics of earthquakes in the Sakhalin region. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 1, pp. 22–36. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2025.9.1.022-036, https://www.elibrary.ru/wqiuqw
Для цитирования: Сафонов Д.А. Новые переходные соотношения для энергетических характеристик землетрясений Cахалинского региона. Геосистемы переходных зон, 2025, т. 9, № 1, с. 22–36.
https://doi.org/10.30730/gtrz.2025.9.1.022-036, https://www.elibrary.ru/wqiuqw
References
1. Droznin D.V., Droznina S.Ya. 2011. Interactive DIMAS program for processing seismic signals. Seismic Instruments, 47(3): 215–224. https://doi.org/10.3103/S0747923911030054
2. Chebrov V.N., Gusev A.A., Gusyakov V.K., Mishatkin V.N., Poplavskiy A.A. 2010. Concept for developing a seismologic observation system for tsunami warning in the Russian Far East. Seismic Instruments, 46: 275–285. https://doi.org/10.3103/s0747923910030096
3. Poplavskaya L.N., Bobkov A.O., Kuznetsova V.N., Nagornykh T.A., Rudik M.I. 1989. [Principles of formation and composition of algorithmic support of the regional center for processing seismological observations (using the example of the Far East)]. In: [ Seismological observations in the USSR Far East (Methodological works of the ESSN )]. Moscow: Nauka, p. 32–50 (In Russ.).
4. Safonov D.A., Semenova E.P. 2022. Regional magnitude Mwa in the Russian Far East. Seismic Instruments, 58(Suppl 1): S42–S57. https://doi.org/10.3103/S074792392207009X
5. Soloviev S.L., Solovieva O.N. 1967. [Relationship between the energy class and the magnitude of Kuril earthquakes]. Fizika Zemli, 2: 13–23. (In Russ.).
6. Rautian T.G. 1964. [On determining the energy of earthquakes at distances up to 3000 km]. In: Eksperimental'naya seismika = Experimental seismic. Moscow: Nauka, p. 88–93. (Trudy IFZ AN SSSR; № 32(199)). (In Russ.).
7. [ Instructions on the procedure for making and processing observations at the seismic stations of the Unified Seismic Observation Service (ESSN USSR) ]. Instruktsiya o poryadke proizvodstva i obrabotki nablyudeniy na seysmicheskikh stantsiyakh Yedinoy sistemy seysmicheskikh nablyudeniy SSSR. 1982. Comp. Kondorskaya N.V., Aranovich Z.I., Shebalin N.V. Moscow: Nauka, 273 p. (In Russ.).
8. Richter Ch.F. 1935 . An instrumental earthquake magnitude scale. Bull. of the Seismological Society of America, 25: 1–32. https://doi.org/10.1785/bssa0250010001
9. Malovichko A.A., Petrova N.V., Gabsatarova I.P., Levina V.I., Mikhailova R.S., Kurova A.D. 2023 . [Seismicity of Northern Eurasia in 2018–2019]. Zemletriaseniia Severnoi Evrazii = Seismicity of Northern Eurasia, 26(2018–2019): 10–38. (In Russ.). https://doi.org/10.35540/1818-6254.2023.26.01
10. Castellaro S., Mulargia F., Kagan Y.Y. 2006. Regression problems for magnitudes. Geophysical Journal International, 165(3): 913–930. https://doi.org/10.1111/j.1365-246X.2006.02955.x
11. Hall J. 2023 . Linear deming regression. MATLAB Central File Exchange. URL: https://www.mathworks.com/matlabcentral/fileexchange/33484-linear-deming-regression (accessed October 11, 2023).
12. Safonov D.A. 2024 . Relationships for conversion of energy characteristics of earthquakes in the Kuril-Okhotsk region. Voprosy inzhenernoj sejsmologii, 51(2): 102–117. (In Russ.). doi: 10.21455/VIS2024.2-6
13. Fuller W.A. 1987 . Measurement error models. New York: John Wiley, 458 p. https://doi.org/10.1002/9780470316665
14. Wason H.R., Das R., Sharma M.L. 2018. Regression relations for magnitude conversion for the Indian Region. In: Advances in Indian Earthquake Engineering and Seismology. Springer, Cham, p. 55–66. https://doi.org/10.1007/978-3-319-76855-7_4
15. JMA. 2024. Japan Meteorological Agency. The Seismological Bulletin of Japan. URL: https://www.data.jma.go.jp/svd/eqev/data/bulletin/index_e.html (accessed December 13, 2024).
16. NIED. 2024. National Research Institute for Earth Science and Disaster Prevention, Japan. URL: http://www.fnet.bosai.go.jp (accessed December 13, 2024).
17. Lolli B., Gasperini P., Vannucci G. 2014. Empirical conversion between teleseismic magnitudes (mb and MS) and moment magnitude (MW) at the Global, Euro-Mediterranean and Italian scale. Geophysical Journal International, 199(2): 805–828. https://doi.org/10.1093/gji/ggu264
18. Volkova L.F., Poplavskaya L.N. 1989. [Regional MPV(A) scale for estimating magnitudes of the Far Eastern earthquakes with normal focal depth]. In: [ Seismology and earthquake-resistant construction in the Far East ]. Vladivostok, p. 39–40 (In Russ.).
19. Oskorbin L.S., Volkova L.F. 1978 . [Parameters of the main shock and the seismic regime of the aftershocks of the Moneron earthquake on September 5(6), 1971]. In: [ Processing of seismological observations and search for earthquake precursors in the Far East ]. Yuzhno-Sakhalinsk, p. 68–87 (In Russ.).
20. Safonov D.A. 2025. [Relationship between the magnitudes MLH and MW for the Kuril-Okhotsk region and its use for transit calculations to other magnitudes]. Journal of Volcanology and Seismology, 2: 20–37.
21. Fokina T.A., Safonov D.A., Kostylev D.V. 2023. Seismicity of the Amur Region and Primorye, Sakhalin and the Kuril-Okhotsk region in 2018–2019. Zemletriaseniia Severnoi Evrazii = Earthquakes of Northern Eurasia, 26 (2018–2019): 154–170. doi: 10.35540/1818-6254.2023.26.13
22. Richter C.F. 1958. Elementary seismology. New York: Freeman and Co., 768 p.