Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2025, vol 9, No. 2, Online first

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2025.0.gah-1, https://elibrary.ru/wvbsfw


Geological and hydrological factors of dissolved methane distribution on the eastern shelf of Sakhalin Island
Kholmogorov, Andrey O., https://orcid.org/0000-0002-6259-1614, kholmogorov.ao@poi.dvo.ru
Syrbu, Nadezhda S., https://orcid.org/0000-0002-1441-6133, syrbu@poi.dvo.ru
Lobanov, Vyacheslav B., https://orcid.org/0000-0001-9104-5578, lobanov@poi.dvo.ru
Zherdev, Pavel D., https://orcid.org/0009-0008-5739-7543, zherdev.pd@poi.dvo.ru
@Maltseva, Elena V., https://orcid.org/0000-0003-3230-7042, ekor@poi.dvo.ru

V.I. Il'ichev Pacific Oceanological Institute of the Far Eastern Branch of RAS, Vladivostok, Russia
Abstract PDF ENG. .PDF RUS Full text PDF RUS

Abstract. This paper continues a series of studies on the formation and distribution of dissolved methane, helium, and hydrogen on the shallow eastern shelf of Sakhalin Island. Numerous measurements, conducted during a comprehensive oceanographic expedition in 2024, revealed localized areas of gas emission from the seabed. The absolute maximum of dissolved methane was 139 nM/l; helium, 12 ppm; hydrogen, 135 ppm; and carbon dioxide, 0.47 percent, which could indicate the underlying source of these gases. It was shown that the formation of areas of high methane concentrations is controlled by a regional fault system. Tectonic activity has a significant impact on the gas distribution, which is important for understanding geochemical processes in a given area. Analysis of the data collected over different seasons showed a noticeable seasonal variability in the distribution of areas of high methane concentrations. During the warm season, these areas form within cold intermediate waters of the Sea of Okhotsk below the lower boundary of the seasonal pycnocline. Methane diffusion to the surface is limited due to the complex water structure and vertical diffusion processes. The studied water area of the eastern shelf of Sakhalin Island is affected by the East Sakhalin Current, which plays a significant role in the distribution of dissolved gases from the seabed sources. This emphasizes the complexity and versatility of the processes regulating the migration and distribution of gases in the marine environment of the western Sea of Okhotsk.


Keywords:
dissolved methane, helium, hydrogen, Sakhalin Island, eastern shelf, East Sakhalin Ñurrent, Okhotsk Sea

For citation: Kholmogorov A.O., Syrbu N.S., Lobanov V.B., Zherdev P.B., Maltseva E.V. Geological and hydrological factors of dissolved methane distribution on the eastern shelf of Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2025, vol. 9, No. 2. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2025.0.gah-1, https://elibrary.ru/wvbsfw

Äëÿ öèòèðîâàíèÿ: Õîëìîãîðîâ À.Î., Ñûðáó Í.Ñ., Ëîáàíîâ Â.Á., Æåðäåâ Ï.Ä., Ìàëüöåâà Å.Â. Ãåîëîãè÷åñêèå è ãèäðîëîãè÷åñêèå ôàêòîðû ôîðìèðîâàíèÿ ïîëåé ïîâûøåííûõ êîíöåíòðàöèé ìåòàíà íà âîñòî÷íîì øåëüôå îñòðîâà Ñàõàëèí. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2025, ò. 9, ¹ 2.
https://doi.org/10.30730/gtrz.2025.0.gah-1, https://elibrary.ru/wvbsfw


References

1. Talwani M., Eldholm O. 1973. Boundary between continental and oceanic crust at the margin of rifted continents. Nature, 241: 325–330. https://doi.org/10.1038/241325a0

2. Moore J.C., Vrolijk P. 1992. Fluids in accretionary prisms. Reviews of Geophysics, 30: 113–135. https://doi.org/10.1029/92rg00201

3. Kazanin G.S., Barabanova Yu.B., Kirillova-Pokrovskaya T.A., Chernikov S.F., Pavlov S.P., Ivanov G.I. 2017. Continental margin of the East Siberian Sea: geological structure and hydrocarbon potential. Razvedka i okhrana nedr = Prospect and Protection of Mineral Resources, 10: 51–55.

4. Khain V., Polyakova I. 2008. Oil and gas potential of continental margins of the Pacific Ocean. Lithology and Mineral Resources, 43: 81–92. https://doi.org/10.1134/S0024490208010082

5. Konyukhov A.I. 2009. Continental margins: Global belts of oil and gas accumulation. Lithology and Mineral Resources, 44: 513–530. https://doi.org/10.1134/S0024490209060017

6. Oliver J., Isacks B.L., Barazangi M. 1974. Seismicity at continental margins. In: Burk C.A., Drake C.L. (eds) The geology of continental margins. Berlin, Heidelberg, Springer, p. 85–92. https://doi.org/10.1007/978-3-662-01141-6_7

7. Orange D.L., Greene H.G., Reed D., Martin J.B., McHugh C.M, Ryan W., Maher N, Stakes D., Barry J. 1999. Widespread fluid expulsion on a translational continental margin: Mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geological Society of America Bulletin, 111(7): 992–1009. https://doi.org/10.1130/0016-7606(1999)111<0992:wfeoat>2.3.co;2

8. Reeburgh W.S. 2007. Oceanic methane biogeochemistry. Chemical Reviews, 107: 486–513. https://doi.org/10.1021/cr050362v

9. Romer M., Sahling H., Pape T., Bohrmann G., Spie? V. 2012. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research: Oceans, 117(C10): C10015. https://doi.org/10.1029/2011jc007424

10. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson O. 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327: 1246–1250. https://doi.org/10.1126/science.1182221

11. Weber T., Wiseman N.A., Kock A. 2019. Global ocean methane emissions dominated by shallow coastal waters. Nature Communication, 10: 4584. https://doi.org/10.1038/s41467-019-12541-7

12. Obzhirov A.I., Il’ichev V.I., Kulinich R.G. 1985. Natural gas anomaly in bottom waters of South China Sea. Doklady Akademii Nauk SSSR, 281(5): 1206–1209. (In Russ.).

13. Kulinich R.G., Obzhirov A.I. 1985. On the structure and current activity of the junction zone of the Sunda shelf and the South China Sea basin. Geology of the Pacific Ocean, 3: 102–106. (In Russ.).

14. Abrams M. 1992. Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska. Marine and Petroleum Geology, 9(2): 208–221. https://doi.org/10.1016/0264-8172(92)90092-s

15. Hovland M., Croker P.F., Martin M. 1994. Fault – associated seabed mounds (carbonate knolls?) off western Ireland and north-west Australia. Marine and Petroleum Geology, 11(2): 232–246. https://doi.org/10.1016/0264-8172(94)90099-x

16. Rozhdestvenskiy V.S. 1976. [Shear displacements along the Tym-Poronai fault zone on Sakhalin Island]. Doklady Akademii Nauk SSSR, 230(3): 678–780. (In Russ.).

17. Khanchuk A.I. 1993. [ The geological structure and development of the continental margin of the Northwest Pacific Ocean ]: extended abstract of the thesis of Dr. of Geology and Mineralogy. Moscow, Geological Institute of the Russian Academy of Sciences. (In Russ.).

18. Chekhovich V.D. (ed.) 1993. [ Tectonics and geodynamics of folded framing of small oceanic basins ]. Moscow: Nauka, 271 p.

19. Isozaki Y. 1996. Anatomy and genesis of a subduction-related orogen: A new view on the geotectonic subdivision and evolution of the Japanese Islands. The Island Arc, 5: 289–320. https://doi.org/10.1111/j.1440-1738.1996.tb00033.x

20. Maruyama S., Isozaki Y., Kimura G., Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6: 121–142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x

21. Grannik V.M. 2005. Correlation of structural units of Sakhalin and Hokkaido. Doklady Earth Sciences, 401(2): 177–181.

22. Grannik V.M. The East-Sakhalin island arc system of the Okhotsk Sea region. 2013. Lithosphere (Russia), 1: 36–51. (In Russ.).

23. Zharov A.E. 2005. South Sakhalin tectonics and geodynamics: A model for the Cretaceous-Paleogene accretion of the East Asian continental margin. Russian Journal of Earth Sciences, 7: ES5002. https://doi.org/10.2205/2005ES000190

24. Syrbu N., Kholmogorov A., Stepochkin I., Lobanov V., Shkorba S. 2024. Formation of abnormal gas-geochemical fields and dissolved gases transport at the shallow northeastern shelf of Sakhalin Island in warm season: Expedition data and remote sensing. Water, 16: 1434. https://doi.org/10.3390/w16101434

25. Kharakhinov V.V. 2010. [ Oil-and-gas geology of the Sakhalin region ]. Moscow: Nauchnyy mir, 276 p. (In Russ.).

26. Vereshchagina O.F., Korovitskaya E.V., Mishukova G.I. 2013. Methane in water columns and sediments of the north western Sea of Japan. Deep-Sea Research II: Topical Studies in Oceanography, 86–87: 25–33. https://doi.org/10.1016/j.dsr2.2012.08.017

27. Yamamoto S., Alcauskas J.B., Crozier T.E. 1976. Solubility of methane in distilled water and seawater. J. of Chemical & Engineering Data, 21(1): 78–80. https://doi.org/10.1021/je60068a029

28. Wiessenburg D.A., Guinasso N.L. 1979. Equilibrium solubility of methane, carbon dioxide, and hydrogen in water and sea water. J. of Chemical & Engineering Data, 24(4): 356–360. https://doi.org/10.1021/je60083a006

29. Leonov A.K. 1960. [ Regional oceanography ]. Leningrad: Hydrometeoizdat, 165 p. (In Russ.).

30. Vlasova G.A., Glebova S.Yu. 2008. Seasonal variability of surface currents in the Okhotsk Sea under influence of atmospheric processes. Izv. TINRO, 154: 259–269.

31. Vlasova G.A., Vasiliev A.S., Shevchenko G.V. 2008. [ Spatial and temporal variability of the water structure and dynamics of the Sea of Okhotsk ]. Moscow: Nauka, 359 p. (In Russ.).

32. Luchin V.A. 1998. Non-periodic currents. In: Hydrometeorology and hydrochemistry of the seas. Vol. 9: The Sea of Okhotsk, vol. 1: Hydrometeorological conditions. St. Petersburg: Hydrometeoizdat, p. 233–256. (In Russ.).

33. Ohshima K.I., Wakatsuchi M., Fukamachi Y., Mizuta G. 2002. Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J. of Geophysical Research: Oceans, 107: 11. https://doi.org/10.1029/2001jc001005

34. Talley L.D. 1991. An Okhotsk Sea water anomaly: Implications for ventilation in the North Pacific. Deep-Sea Research A. Oceanographic Research Papers, 38(S1): S171–S190. https://doi.org/10.1016/s0198-0149(12)80009-4

35. Simizu D., Ohshima K.I. 2002. Barotropic response of the Sea of Okhotsk to wind forcing. Journal of Oceanography, 58(6): 851–860.

36. Shimada Y., Kubokawa A., Ohshima K.I. 2005. Influence of current width variation on the annual mean transport of the East Sakhalin Current: A simple model. Journal of Oceanography, 61: 913–920. https://doi.org/10.1007/s10872-006-0009-y

37. Simizu D., Ohshima K.I. 2006. A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J. of Geophysical Research: Oceans, 111: 05016. https://doi.org/10.1029/2005jc002980

38. Ohshima K.I., Simizu D. 2008. Particle tracking experiments on a model of the Okhotsk Sea: Toward oil spill simulation. Journal of Oceanography, 64: 103–114. https://doi.org/10.1007/s10872-008-0008-2

39. Ebuchi N. 2006. Seasonal and interannual variations in the East Sakhalin Current revealed by the TOPEX/POSEIDON altimeter data. Journal of Oceanography, 62: 171–183. https://doi.org/10.1007/s10872-006-0042-x

40. Fayman P.A. 2018. Atlas of the Sea of Okhotsk. Vladivostok: Dal'nevost. Regional. Nauch.-Issled. Gidrometeorologicheskiy Inst. (DVNIGMI), 133 p.

41. Fayman P.A., Prants S.V., Budyansky M.V., Uleysky M.Yu. 2021. Simulated pathways of the northwestern pacific water in the Okhotsk Sea. Izv., Atmospheric and Oceanic Physics, 57: 329–340. https://doi.org/10.1134/s000143382103004x

42. Rybalko S.I., Shevchenko G.V. 2003. Seasonal and spatial variability of sea currents on the Sakhalin northeastern shelf. Pacific Oceanography, 1(2): 168–178.

43. Pishchal'nik V.M., Arkhipkin V.S., Leonov A.V. 2014. Reconstruction of the annual variations of thermohaline characteristics and water circulation on the northeastern Sakhalin shelf. Water Resources, 41(4): 385–395. https://doi.org/10.1134/s0097807814040113

44. Fayman P., Prants S., Budyansky M., Uleysky M. 2020. New circulation features in the Okhotsk Sea from a numerical model. Izv., Atmospheric and Oceanic Physics, 56: 618–631. https://doi.org/10.1134/s0001433820060043

45. Prants S., Andreev A., Budyansky M., Uleysky M. 2017. Mesoscale circulation along the Sakhalin Island eastern coast. Ocean Dynamics, 67: 345–356. https://doi.org/10.1007/s10236-017-1031-x

46. Polupanov P.V. 2007. Upwelling along the northeastern coast of Sakhalin Island: origination and existence. In: Water life biology, resources status and condition of inhabitation in Sakhalin-Kuril region and adjoining water areas. Yuzhno-Sakhalinsk: SakhNIRO, p. 257–263. (Transactions of the Sakhalin Research Institute of Fisheries and Oceanography; vol. 9).

47. Zhabin I.A., Dmitrieva E.V. 2021. Seasonal and inter-annual variability of wind-driven upwelling near the east coast of Sakhalin Island based on Quikscat/Seawinds scatterometer data. Izv., Atmospheric and Oceanic Physics, 57(12): 1680–1689. https://doi.org/10.1134/s000143382112029x

48. Timofeev V.Yu., Ardyukov D.G., Timofeev A.V., Soloviev V.M., Gornov P.Yu., Shibaev S.V. 2013. [The zone of junction of the Eurasian, Okhotsk and Amur plates according to geophysical data]. In: [ 50 years of seismological monitoring of Siberia ]: Abstracts. All-Russian conf. with international participation, October 21–25, 2013. Novosibirsk: INGG, p. 218–221.

49. Rodnikov A.G., Zabarinskaya L.P., Piip V.B., Rashidov V.A., Sergeyeva N.A., Filatova N.I. 2005. The Okhotsk Sea geotraverse. Vestnik KRAUNTs. Nauki o Zemle = Earth Sciences Bulletin of KRAESC, 5: 45–58. (In Russ.).

50. Sim L.A., Kamenev P.A., Bogomolov L.M. 2020. New data on the latest stress state of the earth’s crust on Sakhalin Island (based on structural and geomorphological indicators of tectonic stress). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 372–383. (In Russ., abstr. in Engl.). https://doi.org/10.30730/gtrz.2020.4.4.372-383

51. Nikolayevsky V.N., Ramazanov T.K. 1986. Generation and propagation of waves along deep faults. Izvestia AN SSSR, Fizika Zemli, 10: 3-13. (In Russ.).

52. Luchin V.A. 1987. [Water circulation in the Sea of Okhotsk and patterns of its intra-annual variations as inferred from the results of diagnostic calculations]. Trudy Dal’nevost. Nauch.-Issled. Gidrometeorol. Inst., 36: 3–13. EDN: VPXBBX

53. Shakirov R.B., Syrbu N.S., Obzhirov A.I. 2016. Distribution of helium and hydrogen in sediments and water on the Sakhalin slope. Lithology and Mineral Resources, 51(1): 61–73. https://doi.org/10.1134/s0024490216010065

54. Voeikova V.A., Nesmeyanov S.A., Serebryakova L.I. 2007. [ Sakhalin neotectonics and active faults ]. M.: Nauka, 186 p.

55. Ballentine C.J., Burgess R., Marty B. 2002. Tracing fluid origin, transport and interaction in the crust. Reviews in Mineralogy and Geochemistry, 47: 539–614. https://doi.org/10.2138/rmg.2002.47.13

56. Lavrushin V.Yu., Polyak B.G., Prasolov E.M., Kamensky I.L. 1996. Sources of material in mud volcano products (based on isotopic, hydrochemical, and geological data). Lithology and Mineral Resources, 31: 557–578.

57. Snyder G.T., Sano Y., Takahata N., Matsumoto R., Kakizaki Y., Tomaru H. 2020. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea. Chemical Geology, 535: 119462. https://doi.org/10.1016/j.chemgeo.2020.119462

58. Tishchenko P.P. 2022. Phytoplankton primary production on the northeastern Sakhalin Island shelf in summer. Marine Biological Journal, 7(4): 81–97. doi:10.21072/mbj.2022.07.4.07

59. Charlou J.L., Donval J.P., Fouquet Y., Jean-Baptiste P., Holm N. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36?14' N, MAR). Chemical Geology, 191(4): 345–359. https://doi.org/10.1016/s0009-2541(02)00134-1

60. Chen J., Liu Yi-F., Zhou L., Irfan M., Hou Z-W., Li W., Mbadinga S.M., Liu J.-F. Yang Shi-Zh., Wu X.L., Gu Ji-D., Mu Bo-Zh. 2020. Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express, 10(63): 1–11. https://doi.org/10.1186/s13568-020-00998-5

61. Duan Z., Mao S. 2006. Thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2000 bar. Geochimica et Cosmochimica Acta, 70(13): 3369–3386. https://doi.org/10.1016/j.gca.2006.03.018

62. Grabowska J., Blazquez S., Sanz E., Zeron I., Algaba J., Miguez J., Blas F., Vega C. 2022. Solubility of methane in water: Some useful results for hydrate nucleation. The Journal of Physical Chemistry B, 126(42): 8553–8570. https://doi.org/10.1021/acs.jpcb.2c04867

63. Kholmogorov A., Syrbu N., Shakirov R. 2022. Influence of hydrological factors on the distribution of methane fields in the water column of the Bransfield Strait: Cruise 87 of the R/V «Academik Mstislav Keldysh», 7 December 2021 – 5 April 2022. Water, 14(20): 3311. https://doi.org/10.3390/w14203311

64. Shakirov R.B., Obzhirov A.I., Biebow N., Salyuk A.N., Tsunogai U., Terekhova V.E., Shoji H. 2005. Classification of anomalous methane fields in the Okhotsk Sea. Polar Meteorology and Glaciology, 19: 50–66.

65. Obzhirov A.I., Shakirov R., Salyuk A., Suess E., Biebow N., Salomatin A. 2004. Relations between methane venting, geological structure and seismo-tectonics in the Okhotsk Sea. Geo-Marine Letters, 24: 135–139. https://doi.org/10.1007/s00367-004-0175-0

66. Yoshida O., Yoshikawa-Inoue H., Watanabe S., Noriki S., Wakatsuchi M. 2004. Methane in the western part of the Sea of Okhotsk in 1998–2000. Journal of Geophysical Research: Oceans, 109: C09S12, Article B09204. https://doi.org/10.1029/2003JC001910