Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2024, vol. 8, no. 1, pp. 37–46

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2024.8.1.037-046, https://www.elibrary.ru/bajsbf


Fault kinematics of Sakhalin Island based on geological and seismological data
1Pavel A. Kamenev, https://orcid.org/0000-0002-9934-5855, p.kamenev@imgg.ru
1Vladislav A. Degtyarev, https://orcid.org/0000-0001-8922-3654, degtyarevvladislav96@yandex.ru
1Olga A. Zherdeva, https://orcid.org/0000-0003-4814-0865, o.zherdeva@imgg.ru
2Yury V. Kostrov, kos-geo@yandex.ru

1Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
2LLC SakhalinNIPIneftigasa, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS. .PDF ENG

Abstract. The paper presents a tectonic map of Sakhalin Island showing digitized faults derived from 1:1,000,000 scale tectonic maps and identified by geological surveys (detailed on 1:200,000 and 1:50,000 scale maps). The structural geological data on the kinematics of faults have been compared with seismological data on the earthquake focal mechanisms. A reasonable correspondence of these data has been obtained. The predominant kinematic type of faults is thrust/throw in the southern and northern parts of Sakhalin Island. In the central part of Sakhalin, a mixing of fault kinematic types is observed, mainly thrust faults with rare normal and strike-slip faults. Two uninformative zones have been identified with virtually no data on both structural geology and seismology. The earthquake focal mechanisms with a strike-slip component are dominant at their boundaries.


Keywords:
fault, thrust, normal fault, strike-slip fault, GIS, digital map, Sakhalin, earthquake focal mechanisms

For citation: Kamenev P.A., Degtyarev V.A., Zherdeva O.A., Kostrov Yu.V. Fault kinematics of Sakhalin Island based on geological and seismological data [Electronic source]. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2024, vol. 8, no. 1.
https://doi.org/10.30730/gtrz.2024.8.1.037-046, http://journal.imgg.ru/web/full/f-e2024-1-3.pdf

Для цитирования: Каменев П.А., Дегтярев В.А., Жердева О.А., Костров Ю.В. Кинематика разрывных нарушений Сахалина по геологическим и сейсмологическим данным. Геосистемы переходных зон, 2024, т. 8, № 1, с. 37–46.
https://doi.org/10.30730/gtrz.2024.8.1.037-046, https://www.elibrary.ru/bajsbf


References

1. Lunina O.V. 2016. The digital map of the Pliocene-Quaternary crustal faults in the southern East Siberia and the adjacent Northern Mongolia. Geodynamics & Tectonophysics, 7(3): 407–434. (In Russ.). https://doi.org/10.5800/GT-2016-7-3-0215

2. Seminsky К.Zh. 2014. Specialized mapping of crustal fault zones. Pt 1: Basic theoretical concepts and principles. Geodynamics & Tectonophysics, 5(2): 445–467. (In Russ.). http://dx.doi.org/10.5800/GT-2014-5-2-0136

3. Lunina O.V. 2016. Faults and seismically induced geological hazards in southern East Siberia and adjacent areas. Novosibirsk: Publ. House of SB RAS, 226 p. (In Russ.).

4. Rebetsky Yu.L., Marinin A.V., Kuzikov S.I., Sycheva N.A., Sychev V.N. 2020. Tectonophysical study of the Verkhovoi fault activity on the northern slope of the Kyrgiz ridge. Geodynamics & Tectonophysics, 11(4): 770–784. (In Russ.). https://doi.org/10.5800/GT-2020-11-4-0506

5. Heidbach O., Rajabi M., Cui X., Fuchs K., Muller K., Reinecker B., Reiter J., Tingay K., Wenzel F., Xie F., Ziegler M., Zoback M.L., Zoback M.D. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. https://doi.org/10.1016/j.tecto.2018.07.007

6. Melnikov O.A., Poplavskaya L.I., Nagornykh T.V. 2001. A system of stresses in Sakhalin earthquake sources and its relation with tectonics. Russian Journal of Pacific Geology, 20(3): 3–11. (In Russ.).

7. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237

8. Bogomolov L.M., Sim L.A., Kamenev P.A. 2020. Neotectonics and stressed state patterns of the Sakhalin Island. Intech Open. Engineering Geology. https://doi.org/10.5772/intechopen.93522

9. Prytkov A.S., Vasilenko N.F. 2018. Earth surface deformation of the Sakhalin Island from GPS data. Geodynamics & Tectonophysics, 9(2): 503–514. (In Russ.). https://doi.org/10.5800/GT-2018-9-2-0358

10. Safonov D.A., Nagornykh T.V., Konovalov A.V., Stepnov A.A. 2017. The moment tensors, focal mechanisms, and stresses on Sakhalin Island. Journal of Volcanology and Seismology, 3(11): 225–234. https://doi.org/10.7868/S0203030617030051

11. Dymovich V.A., Evseev S.V., Evseev V.F. et al. (comp.) 2016. [State Geological map of Russian Federation on a scale of 1:1 000 000. Third generation. Far East series. Sheet M-54 (Aleksandrovsk-Sakhalinskiy) ]: [Explanatory note]. St. Petersburg: Kartograf. fabrika VSEGEI, 599 p. (In Russ.). URL: https://www.vsegei.ru/ru/info/pub_ggk1000-3/Dalnevostochnaya/m-54.php

12. Kozhurin A.I. 2013. Active geodynamics of the northwestern sector of the Pacific Tectonic Belt (according to the study of active faults): extended abstract of the thesis … Doctor of Geology and Mineralogy. Moscow, Geological Institute RAS, 46 p. (In Russ.).

13. Melancholina E.N. 1988. Tectonics of the Northwestern Pacific. Correlations of structures of the ocean and the continental margin. Moscow: Nauka, 216 p. (Proceedings of the GIN RAS; Iss. 434). (In Russ.).

14. Richter A.V. 1986. The structure and tectonic development of Sakhalin in the Mesozoic. Moscow: Nauka, 93 p. (Proceedings of the GIN RAS; Iss. 411). (In Russ.).

15. Grannik V.M. 2008. Geology and geodynamics of the southern part of the Okhotsk Sea region in the Mesozoic and Cenozoic. Vladivostok: Dalnauka, 297 p. (In Russ.).

16. Kirillova G.L. (ed.) 2004. Geology, geodynamics and petroliferous potential of the sedimentary basins of the Tatar Strait. Authors: A.E. Zharov, G.L. Kirillova, L.S. Margulis et al. Vladivostok: FEB RAS, 220 p. (Sedimentary basins of the East of Russia; vol. 2). (In Russ.).

17. Kostrov Yu.V., Khmarin E.K. 2018. Updated model of the Paleoamur–Paleoamgun delta genesis. Oil and gas geology. Theory and practice, 13(1): 10. (In Russ.). https://doi.org/10.17353/2070-5379/7_2018

18. Rozhdestvensky V.S. 1982. The role of strike-slip in the structure of Sakhalin. Geotectonics, 16: 323–332.

19. Bulgakov R.F., Ivashchenko A.I., Kim Ch.U., Sergeev K.F., Strel’cov M.I., Kozhurin A.I., Besstrashnov V.M., Strom A.L., Sudzuki J., Cucumi H., Vatanabe M., Ueki T., Shimimoto T., Okumura K., Goto H., Kariya J. 2002. Active faults in Northeastern Sakhalin. Geotektonika, 36(3): 227–246.

20. Sharueva L.I., Lopatin B.G., Roganov G.V. et al. (comp.) 2016. [State Geological map of Russian Federation on a scale of 1:1 000 000. Third generation. Far East series. Sheet N-54 (Nikolaevsk-na-Amure)]: Explanatory note. St Petersburg: Kartograf. fabrika VSEGEI, 477 p. (In Russ.). URL: https://www.vsegei.ru/ru/info/pub_ggk1000-3/Dalnevostochnaya/n-54.php

21. Alenicheva A.A., Lizganov A.V., Ivanova V.V. et al. (comp.) 2019. [State Geological map of Russian Federation on a scale of 1:1 000 000. Third generation. Far East series. Sheet L-(53), 54 (Yuzhno-Sakhalinsk)]: Explanatory note. St. Petersburg: Kartograf. fabrika VSEGEI, 536 p. (In Russ.). URL: https:// www.vsegei.ru/ru/info/pub_ggk1000-3/Dalnevostochnaya/l-53-54.php

22. Tarasevich Yu.N., Kovtunovich Yu.M. (comp.) 1964. [The State Geological map of the USSR on a scale of 1:200000. The Sakhalin series. Sheet M-55-XIX]. (In Russ.). URL: https://geolkarta.ru/list_200.php?idlist=M-55-XIX&idlist_d=G&gen=1&g=1

23. Kovtunovich Y.M. (comp.) 1965. [The State Geological map of the USSR on a scale of 1:200000. The Sakhalin series. Sheet M-55- XXV, XXXI]. (In Russ.). URL: https://geolkarta.ru/list_200.php?idlist=M-55-XXV&idlist_d=G&gen=1&g=1

24. Galversen V.G., Rybak-Franko Y.V. et al. (comp.) 2009. [State Geological map of the Russian Federation scale 1:200 000. Second ed. The Sakhalin series. Sheet M-54-XVIII (Borderline)]: Explanatory note. St. Petersburg: Kartograf. fabrika VSEGEI, 187 p. (In Russ.). URL: http://geo.mfvsegei.ru/200k/m-54/m-54-18/1/index.html

25. Chumakov L.M., Evseev S.V., Zueva O.S. et al. (comp.) 2020. [State Geological map of the Russian Federation scale 1:200 000. Second ed. The Sakhalin series. Sheet N-54-XXIX (Neftegorsk)]: Explanatory note. St. Petersburg: Kartograf. fabrika VSEGEI, 187 p. (In Russ.). URL: http://geo.mfvsegei.ru/200k/n-54/n-54-29/index.html

26. Anisimov G.A., Valeeva S.E., Valeeva I.F., Anisimova L.Z. 2016. About the current situation on the use of software systems in the mineral wealth use. Exposition Oil & Gas, 6(52): 13–15. (In Russ.).

27. Kharakhinov V.V., Galtsev-Bezyk S.D., Tereshenkov A.A. 1984. Sakhalin faults. Geology of the Pacific Ocean, 2: 77–86. (In Russ.).

28. Konovalov A.V., Nagornykh T.V., Safonov D.A. 2014. Recent study of earthquake source mechanisms in Sakhalin. Vladivostok: Dal’nauka, 252 p. (In Russ.).

29. Zelenin E.A., Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. 2022. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset. Earth System Science Data, 14(10): 4489–4503. https://doi.org/10.5194/essd-14-4489-2022

30. Smith W.H.F., Sandwell D.T. 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962. https://doi.org/10.1126/science.277.5334.1956