Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2024, vol. 8, no. 1, pp. 13–36

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2024.8.1.013-036, https://www.elibrary.ru/cgjuf


Genesis and evolution of peat deposits on island territories of the southwestern Okhotsk Sea Region in the Holocene
1Vladimir V. Chakov, https://orcid.org/0000-0001-9939-4289, chakov@ivep.as.khb.ru
1Mikhail A. Klimin, https://orcid.org/0000-0003-1329-5437, m_klimin@bk.ru
1Victoria A. Kuptsova, https://orcid.org/0000-0002-7235-0486, victoria@ivep.as.khb.ru
1Elena N. Zakharchenko, https://orcid.org/0000-0002-3918-8878, elenaivep@mail.ru
2Nadezhda G. Razjigaeva, https://orcid.org/0000-0001-7936-1797, nadyar@tigdvo.ru
2Lyudmila M. Mokhova, https://orcid.org/0000-0003-0396-4756, tigpaleo@mail.ru
2Larisa A. Ganzey, https://orcid.org/0000-0002-2538-6603, lganzey@mail.ru
2Tatyana A. Grebennikova, https://orcid.org/0000-0002-5805-391X, nadyar@tigdvo.ru
1Institute of the Water and Ecology Problems of the Far Eastern Branch of RAS, Khabarovsk, Russia
2Pacific Geographical Institute of the Far Eastern Branch of RAS, Vladivostok, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. The paper considers the results of studying of wetland ecosystems within the boundaries of the “Shantar Islands” National Park in 2016–2018. The characteristics of peat deposits in main bog areas that developed over the Holocene on the surfaces dating back to the Late Pleistocene are described. The features of waterlogging in the flattened watersheds of the Bolshoy Shantar Island in different periods of the evolution of studied peat bogs are considered on the basis of the results of botanical, palynological and radiocarbon analyzes. The settlement of green mosses among areas sparsely vegetated by shrub-sedge communities in small closed depression with a melting substrate during the growth season was determined as the initial centers of waterlogging on the archipelago. The regressive effect of cryogenic processes on the formation of specific organogenic landforms in oligotrophic bogs of the permafrost zone of the southwestern Okhotsk Sea Region has been identified by analyzing cartographic materials, Earth remote sensing data of medium and high spatial resolution (Landsat-8, Sentinel-2), as well as aerial images taken by DJI Phantom 4 UAV. There is a relationship between the thickness of the peat deposit, the natural and climatic circumstances of different Holocene stages, and successional changes in bog vegetation. These shifts' chronometric parameters and order have been established. The order and chronologic parameters of these shifts have been determined. In contrast to the mainland, the transgression of the sea and the confinement of the archipelago to the cryolithic zone of eastern Eurasia were the main factors that defined the features of the development of island swamp phytocenoses and surrounding vegetation.


Keywords:
Holocene, bog formation, peat deposit, cryolithic zone, biodiversity, sphagnum cover, transgression

For citation: Chakov V.V., Klimin M.A., Kuptsova V.A., Zakharchenko E.N., Razjigaeva N.G., Mokhova L.M., Ganzey L.A., Grebennikova T.A. Genesis and evolution of peat deposits on island territories of the southwestern Okhotsk Sea Region in the Holocene. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2024, vol. 8, no. 1, pp. 13–36. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2024.8.1.013-036, https://www.elibrary.ru/cgjuf

Äëÿ öèòèðîâàíèÿ: ×àêîâ Â.Â., Êëèìèí Ì.À., Êóïöîâà Â.À., Çàõàð÷åíêî Å.Í., Ðàçæèãàåâà Í.Ã., Ìîõîâà Ë.Ì., Ãàíçåé Ë.À., Ãðåáåííèêîâà Ò.À. Ãåíåçèñ è ýâîëþöèÿ òîðôÿíûõ îòëîæåíèé íà îñòðîâíûõ òåððèòîðèÿõ þãî-çàïàäíîãî Ïðèîõîòüÿ â ãîëîöåíå. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2024, ò. 8, ¹ 1, ñ. 13–36.
https://doi.org/10.30730/gtrz.2024.8.1.013-036, https://www.elibrary.ru/cgjuf


References

1. Ganeshin V.G. 1956. [Origin of the Shantar Islands]. Priroda = Nature, 4: 91–93. (In Russ.).

2. Korotkii A.M., Grebennikova T.A., Pushkar V.S., Razjigaeva N.G., Volkov V.G., Ganzey L.A., Mokhova L.M., Bazarova V.B., Makarova T.R. 1997. Climatic changes in the southern Russian Far East during Late Pleistocene – Holocene. Vestnik DVO RAN = Vestnik of the FEB RAS, 3: 121– 143. (In Russ.). EDN: SXQAFR

3. Yanchenko E.A. 2019. [Response of radiolarians to global orbital and millennial changes in climate and environment of the Sea of Okhotsk in the Late Pleistocene and Holocene]: extended abstr. of diss. … Cand. Sci. (Geol. and Mineral.). Vladivostok, V.I. Il’ichev Pacific Oceanological Institute FEB RAS. (In Russ.).

4. Romanovsky N.N. 1993. [Fundamentals of cryogenesis of the lithosphere]. Moscow: Moscow State Univ. Publ. House, 336 p. (In Russ.).

5. Sochava V.B. 1961. [Problems of classification of vegetation, typology of physiographic facies and biogeocenoses]. In: [Vegetation classification issues]. Sverdlovsk: Ural Branch of the Academy of Sciences of the USSR, p. 5–22. (In Russ.).

6. Khotinsky N.A. 1977. [Holocene of Northern Eurasia]. Moscow: Nauka, 192 p. (In Russ.).

7. Neishtadt M.I. 1957. [History of forests and paleogeography of the USSR in the Holocene]. Moscow: Nauka, 404 p. (In Russ.).

8. Kolesnikov B.P. 1961. [Vegetation]. In: Far East: physical and geographical characteristics. Moscow: Nauka, p. 183–298. (In Russ.).

9. Prozorov Yu.S. 1974. [Bogs of the Lower Amur lowlands]. Novosibirsk: Nauka, 211 p. (In Russ.).

10. Savchenko I.F., Sokhina E.N. 1973. [About the history of development of Kholansky peatbog]. In: Voprosy evolyucii landshaftov yuga Dal'nego Vostoka = [The questions of landscape evolution of the South Far East], vol. 12. Khabarovsk, p. 232–237. (In Russ.).

11. Chakov V.V. 2009. [Resources of raised bogs of the Lower Amur region and prospects for their development]. Khabarovsk: DVO RAN, 172 p. (In Russ.).

12. Klimin M.A., Bazarova V.B., Mokhova L.M., Kuzmin Ya.V., Orlova L.A. 2005. [Stratigraphy and chronology of lacustrine-mire deposits of the Gursky peat deposit (Lower Amur region, Russia)]. In: [The reports of the International APN-START symposium on study of global changes in the North-Eastern Asia, Vladivostok, October 7–8, 2002] . Vladivostok: Dal’nauka, p. 46–57. (In Russ.).

13. Mikishin Yu.A., Gvozdeva I.G. 2009. [Subfossil spore-pollen complexes of Sakhalin and adjacent areas]. Vladivostok: Izd-vo Dal’nevost. universiteta, 162 p. (In Russ.).

14. Lyashchevskaya M.S., Klimin M.A., Bazarova V.B. 2023. [Development of the natural environment of the Middle Amur lowland at the end of the Late Pleistocene – the beginning of the early Holocene]. In: Geosystems of Northeast Asia: natural, natural resource and socio-economic structures. Vladivostok: TIG DVO RAN = PGI FEB RAS, p. 347–353. (In Russ.).

15. Ostroukhov A.V., Chakov V.V., Kuptsova V.A. 2018. Application of aerial photography with UAV DJI Phantom 4 for detailed landscape mapping marsh geosystems (for example swamps Argulad, Bolshoy Shantar Island). In: [The use of unmanned aerial vehicles in geographical research: Materials of the All-Russian Scientific and Practical Conference], May 22–23, 2018, Irkutsk. Irkutsk: V.B. Sochava Institute of Geography SB RAS, p. 89–93. (In Russ.).

16. Korchagin A.A. et al. (eds) 1964. [Field geobotany]. Moscow; Leningrad: Publ. House of the Academy of Sciences of the USSR, 530 p. (In Russ.).

17. Ignatov M.S., Ignatova E.A. 2003. Moss flora of the Middle European Russia. Vol. 1. Sphagnaceae – Hedwigiaceae. Moscow: KMK Scientific Press, 608 p. (In Russ.).

18. Kulikova G.G. 1974. [Brief guide to the botanical analysis of peat]. Moscow: Publ. House of Moscow University, 94 p. (In Russ.).

19. Kats N.Ya., Kats S.V., Skobeeva N.I. 1977. [Atlas of plant remains in peat]. Moscow: Nedra, 371 p. (In Russ.).

20. Pokrovskaya I. M. (ed.) 1966. [Paleopalynology. Vol. 1. Methods of paleopalinological research and morphology of some fossil spores, pollen and other plant microfossils]. Leningrad: Nedra, 372 p. (In Russ.).

21. Blaauw M., Christen J.A. 2011. Flexible paleoclimate age-depth models using an 601 autoregressive gamma process. Bayesian Analysis, 6(3): 457–474. https://doi.org/10.1214/11-BA618

22. Petrov E.S., Novorotsky P.V., Lenshin V.T. 2000. [Climate of the Khabarovsk Region and the Jewish Autonomous Region]. Khabarovsk: Dalnauka, 173 p. (In Russ.).

23. Middendorf A.F. 1867. Travel to the north and east Siberia. North and East Siberia in natural-historical terms. Vegetation of Siberia. St. Petersburg: Printing House of the Imperial Academy of Sciences, 1(4): 491–758. (In Russ.).

24. Nechaev A.P. 1955. Shantar Islands. In: [Questions of geography of the Far East]. Khabarovsk: Khabarov. knizhn. izd-vo, 2: 18–35. (In Russ.).

25. Schlotgauer S.D., Kryukova M.V. 2005. Flora of protected areas of the coasts of the Russian Far East: Botchinsky, Dzhugdzhursky nature reserves, Shantarsky reserve. Moscow: Nauka, 264 p. (In Russ.).

26. Kuptsova V.A. 2019. Vegetation cover of wetlands of the shoreline of Lake Bolshoe (Bolshoy Shantar Island, Shantar Islands National Park). In: X Galkin Readings: Conf. Proceedings, February 4–6, 2019, St. Petersburg. St. Petersburg: St. Petersburg State Electrotechnical University (LETI named after. V.I. Ulyanov (Lenin)), p. 108–110. (In Russ.).

27. Butov I.V. 2016. The supralittoral vascular plants of islands of the Lesser Kuril Ridge. Vestnik KrasGAU, 4: 40–45. (In Russ.). EDN: VTFHKR

28. Sergienko L.A. 2008. Flora and vegetation of the coasts of the Russian Arctic and adjacent territories. Petrozavodsk: Izd-vo PetrGU, 225 p. (In Russ.).

29. Chakov V.V., Kuptsova V.A., Klimin M.A., Ostroukhov A.V., Ivchenko T.G., Bakalin V.A., Skirina I.F. 2017. Wetlands of the Shantar Archipelago as an indicator of changes in the natural and climatic conditions of the Western Pacific. In: Marine and coastal specially protected natural areas - the property of Russia: Conf. proceedings of the XI Intern. Conf. on Ocean Geography and Mapping. St. Petersburg: IPK “Applied Ecology”; Commission of Ocean Geography of the St. Petersburg Branch of the Russian Geographical Society, p. 249–259. (In Russ.).

30. Boch M.S. 1983. [North Kamchatka province of aapa-hummocky mires]. In: Proceedings of the 7th Congress of the All-Union Botanical Society. Donetsk, p. 129–130. (In Russ.).

31. Kutenkov S., Chakov V., Kuptsova V. 2022. Topology, vegetation and stratigraphy of Far Eastern aapa mires (Khabarovsk Region, Russia). Land, 11(1): 96. https://doi.org/10.3390/land11010096

32. Schlotgauer S.D., Kryukova M.V. 2012. Vegetation cover of the Shantar Islands. Geography and Natural Resources, 33(3): 237–241. https://doi.org/10.1134/s1875372812030092

33. Chakov V.V., Kuptsova V.A. 2015. Specifics of forming and distribution of sphagnum species on oligotrophic peatlands of mainland coast of the Tatar Strait. Vestnik DVO RAN = Vestnik of the FEB RAS, 2(180): 16–24. (In Russ.). EDN: TTYLFL

34. Sergienko V.G. 2015. The dynamics of the boundaries of forest vegetation zones in Russia under climate change. In: Proceedings of the Saint Petersburg Forestry Research Institute, 1: 5–19. (In Russ.). EDN: TKVBZN

35. Novenko E.Yu. 2020. Dynamics of landscapes and climate in central and eastern Europe in the Holocene: paleographic aspects for forecasting of possible environmental changes. Ecosystems: ecology and dynamics, 4(4): 57–80. (In Russ.). https://doi.org/10.24411/2542-2006-2020-10074

36. Khotinsky N.A. 1989. Controversial problems of reconstruction and correlation of Holocene paleoclimates. In: Paleoclimates of the Late Glacial and Holocene. Moscow: Nauka, p. 12–17. (In Russ.).

37. Nesje A., Dahl S.O., Bakke J. 2004. Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans? The Holocene, 14(2): 299–310. https://doi.org/10.1191/0959683604hl7

38. McNeall D., Halloran P.R., Good P., Betts R.P. 2011. Analyzing abrupt and nonlinear climate changes and their impacts. Wires climate change, 2(5): 663–686. https://doi.org/10.1002/wcc.130

39. Popov A.I. 1967. [Permafrost phenomena in the Earth's crust (Cryolithology)]. Moscow: Publ. House of Moscow University, 304 p. (In Russ.).

40. Khimenkov A.N. 2019. Parageneses in the permafrost zone. Arctic and Antarctic, 1: 15–52. EDN: XGPLGO; doi:10.7256/2453-8922.2019.1.29119; URL: https://nbpublish.com/library_read_article.php?id=29119 (In Russ.).

41. Vazhenina L.N., Lozhkin A.V. 2013. Early holocene peatlands of north-East of Siberia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 5: 74–84. (In Russ.). EDN: RFXCKH

42. Razjigaeva N.G., Grebennikova T.A., Ganzei L.A., Chakov V.V., Klimin M.A., Mokhova L.M., Zakharchenko E.N. 2021. The stratigraphy of the blanket peatland and the development of environments on Bolshoi Shantar Island in the Late Glacial – Holocene. Russian Journal of Pacific Geology, 15(3): 252–267. https://doi.org/10.1134/s1819714021030064

43. Razjigaeva N., Ganzey L., Grebennikova T., Ponomarev V., Mokhova L., Chakov V., Klimin M. 2022. Bioaerosols as evidence of atmospheric circulation anomalies over the Okhotsk Sea and Shantar Islands in the Late Glacial – Holocene. Climate, 10(2): 24. https://doi.org/10.3390/cli10020024

44. Khotinsky N.A. 1977. [Holocene of Northern Eurasia. Experience of transcontinental correlation of stages of development of vegetation and climate]. Moscow: Nauka, 198 p. (In Russ.).

45. Bazarova V.B., Klimin M.A., Kopoteva T.A. 2018. Holocene dynamics of the East-Asian monsoon in the Lower Amur Area. Geography and Natural Resources, 39: 239–247. https://doi.org/10.1134/s1875372818030071

46. Ferguson C.W. 1968. Bristlecone pine: science and esthetics: a 7100-year tree-ring chronology aids scientists; old trees draw visitors to California mountains. Science, 159(3817): 839–846. https://doi.org/10.1126/science.159.3817.839

47. Prozorov Yu.S. 1961. [The bogs of swampy landscape of the Middle Amur lowland]. Moscow: Izd-vo AN SSSR, 123 p. (In Russ.).

48. Pomortsev O.A., Kashkarov E.P., Lovelius N.V. 2015. Bioclimatic chronology of the Holocene: reconstruction and prognosis. NEFU Bulletin, 3(47): 100–115. (In Russ.). EDN: VKPQNJ

49. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Chakov V.V., Kopoteva T.A., Klimin M.A., Simonova G.V. 2023. Global cooling events of the Late Holocene preserved in the coastal sediments in the southern Far East of Russia. Geomorfologiya i Paleogeografiya, 54(1): 112–130. (In Russ.). https://doi.org/10.31857/S2949178923010115

50. Markov Yu.D. 1983. [South Primorsky shelf of the Sea of Japan in the Late Pleistocene and Holocene]. Vladivostok: DVNTs AN SSSR, 128 p. (In Russ.).

51. Kaplina T.N., Lozhkin A.V. 1982. The history of the development of the vegetation of the coastal lowlands of Yakutia in the Holocene. In: Development of the nature of the territory of the USSR in the Late Pleistocene and Holocene. Moscow: Nauka, p. 207–218. (In Russ.).

52. Peskov A.Yu., Krutikova V.O., Zakharchenko E.N., Chakov V.V., Klimin M.A., Karetnikov A.S., Didenko A.N. 2020. Geochemistry and magnetism of peat deposits in the Khor–Kiya interfluve, Sikhote-Alin (preliminary results). Russian Journal of Pacific Geology, 14(2): 169–179. https://doi.org/10.1134/s1819714020020050

53. Babeshina L.G., Zverev A.A. 2010. Estimation of conditions of habitats of sphagnum mosses in West Siberian Plain: Soil fertility factor. Tomsk State University Journal, 338: 188–194. (In Russ.). EDN: NBVGOT

54. Babeshina L.G., Zverev A.A. 2010. Estimation of conditions of habitats of sphagnum mosses in West Siberian Plain: Humidification factor. Tomsk State University Journal, 331: 185–191. (In Russ.). EDN: NBILJH

55. Wanner H., Ritz S. A web-based Holocene Climate Atlas (HOCLAT). URL: https://www.oeschger.unibe.ch/research/projects_and_databases/web_based_holocene_climate_atlas_hoclat/e230763/e230764/hoclat_eng.pdf (accessed 31.10.2023).

56. Wanner H., Solomina O., Grosjean M., Ritz S.P., Jetel M. 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews, 30(21–22): 3109–3123. https://doi.org/10.1016/j.quascirev.2011.07.010