Abstract PDF ENG | Ðåçþìå PDF RUS | Full text PDF RUS. .PDF ENG |
Abstract. The average value of methane fluxes from the sea surface in the Chukchi Sea (4±4 mol/(km2×day)) and parameters of methane supersaturation of the surface water layer (78±39 %) were lower than in the East Siberian Sea (32±24 mol/(km2×day) and 346±247 %, respectively). In 50 % of cases, the concentrations of dissolved methane in the surface layer of sea waters were two times higher than the equilibrium values with the atmosphere. The heterogeneous distribution of methane in seawater causes a change in the direction and magnitude of methane fluxes at the water–atmosphere boundary under given experimental hydrometeorological conditions. Data analysis showed that the flux was predominantly determined by wind speed (correlation coefficient Q = 0.8), concentration of dissolved methane (Q = 0.6), parameter of methane supersaturation of waters (Q = 0.6), and temperature of the surface water layer (Q = –0.6). A negative correlation coefficient with temperature indicates that as the temperature decreases, the solubility of methane in water increases, the difference in concentrations with the atmosphere decreases, and the intensity of methane flux decreases.
Keywords:
methane fluxes, East Siberian Sea, Chukchi Sea, Arctic
For citation: Mishukova G.I. Methane fluxes at the water–atmosphere boundary in the waters of the Russian sector of the Eastern Arctic. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2024, vol. 8, no. 1, pp. 5–12.
https://doi.org/10.30730/gtrz.2024.8.1.005-012, https://www.elibrary.ru/wgcapo
Äëÿ öèòèðîâàíèÿ: Ìèøóêîâà Ã.È. Ïîòîêè ìåòàíà íà ãðàíèöå âîäà–àòìîñôåðà íà àêâàòîðèè ðîññèéñêîãî ñåêòîðà Âîñòî÷íîé Àðêòèêè [Ýëåêòðîííûé ðåñóðñ]. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2024, ò. 8, ¹ 1.
https://doi.org/10.30730/gtrz.2023.8.1.005-012, http://journal.imgg.ru/web/full/f2024-1-1.pdf
References
1. Shakirov R.B., Khazanova E.S., Stepochkin I.E. 2023. New data on the patterns of methane distribution over the Arctic shelf of Eurasia. Doklady Earth Sciences, 511: 623–626. https://doi.org/10.1134/S1028334X23600536
2. Gresov A.I., Obzhirov A.I., Yatsuk A.V., Mazurov A.K., Ruban A.A. 2017. Gas content of bottom sediments and geochemical indicators of oil and gas on the shelf of the East Siberian Sea. Russian Journal of Pacific Geology, 11: 308–314.
3. Gresov A.I., Obzhirov A.I., Yatsuk A.V. 2014. Geostructural regularities of the distributions of permafrost in gas- and coal-bearing basins in the North-East of Russia. Kriosfera Zemli = Earth’s Cryosphere, 18(1): 3–11. (In Russ.). EDN: RXDUBF
4. Gresov A.I., Obzhirov A.I., Yatsuk A.V. Shakirov R.B. 2015. Geotectonic aspects of coal-gas basins formation in North-East of Russia. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 3(27): 58–70. (In Russ.). EDN: URQKDX
5. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Gustafsson O. 2013. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geoscience, 7: 64–70. DOI:10.1038/ngeo2007
6. Shakirov R.B., Sorochinskaya A.V., Obzhirov A.I. 2013. Gasgeochemical anomalies in the sediments of East-Siberian Sea. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 1(21): 98–110. (In Russ.). EDN: RCCSOL
7. Shakirov R.B., Maltseva E.V., Venikova A.L., Sokolova N.L., Gresov A.I. 2023. Complex geological and geophysical studies on substantiation of the outer limits of the Russian continental shelf in the Sea of Okhotsk and East Siberian Sea (2006–2009): Review. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 7(3): 264–275. http://journal.imgg.ru/web/full/f-e2023-3-3.pdf
8. ARA07C Cruise Report: 2016 Korea-Russia-Germany East-Siberian Sea Research Program. 2017. Korea Polar Research Inst., 108. URL: http://repository.kopri.re.kr/handle/201206/4995 (accessed 22.11.2023).
9. Matveeva T.V., Semenova A.A., Shchur N.A., Logvina E.A., Nazarova O.V. 2017. Prospects of gas hydrate presence in the Chukchi Sea. Journal of Mining Institute, 226: 387–396. https://doi.org/10.25515/pmi.2017.4.387
10. Kosmach D.A., Sergienko V.I., Dudarev O.V., Kurilenko A.V., Gustafsson O., Semiletov I.P., Shakhova N.E. 2015. Methane in the surface waters of Northern Eurasian marginal seas. Doklady Chemistry, 465: 281–285. https://doi.org/10.1134/S0012500815120022
11. Savvichev A.S., Rusanov I.I., Pimenov N.V., Zakharova E.E., Veslopolova E.F., Lein A.Y., Crane K., Ivanov M.V. 2007. Microbial processes of the carbon and sulfur cycles in the Chukchi Sea. Microbiology, 76: 603–613. https://doi.org/10.1134/S0026261707050141
12. Li Y., Zhan L., Zhang J., Chen L., Chen J., Zhuang Y. 2017. A significant methane source over the Chukchi Sea shelf and its sources. Continental Shelf Research, 148: 150–158. https://doi.org/10.1016/j.csr.2017.08.019
13. Fenwick L., Capelle D., Damm E., Zimmermann S., Williams W.J., Vagle S., Tortell P.D. 2017. Methane and nitrous oxide distributions across the North American Arctic Ocean during summer, 2015. J. of Geophysical Research: Oceans, 122(1): 390–412. https://doi.org/10.1002/2016JC012493
14. Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernstrom M., Crill P.M. 2020. Shipborne eddy covariance observations of methane fluxes constrain Arctic Sea emissions. Science Advances, 6(5). https://doi.org/10.1126/sciadv.aay7934
15. Yamamoto S., Alcauskas J.B., Crozier T.E. 1976. Solubility of methane in distilled water and seawater. Journal of Chemical&Engineering Data, 21(1): 78–80. https://doi.org/10.1021/je60068a029
16. Wiessenburg D.A., Guinasso N.L. 1979. Equilibrium solubility of methane, carbon dioxide, and hydrogen in water and sea water. Journal of Chemical&Engineering Data, 24(4): 356–360. https://doi.org/10.1021/je60083a006
17. Michoukov V., Mishukova G. 1999. White caps and bubble mechanisms of gas exchange between ocean and atmosphere. In: Proceedings of the 2nd International Symp. “CO2 in the Oceans”. Ed. Y. Nojiri; Environ. Agency of Japan, p. 517–520.
18. Mishukova G.I., Obzhirov A.I., Mishukov V.F. 2007. Methane in fresh and sea waters and its fluxes at the water-atmosphere interface in the Far Eastern region. Vladivostok: Dalnauka, 159 p. (In Russ.).
19. Vereshchagina O.F., Korovitskaya E.V., Mishukova G.I. 2013. Methane in water columns and sediments of the north western Sea of Japan. Deep Sea Research. Part II: Topical Studies in Oceanography, 86–87: 25–33. DOI:10.1016/j.dsr2.2012.08.017
20. Legkodimov A.A., Mishukova O.B., Shvalov D.A., Makseev D.S., Shakirova M.V., Bakunina M.S., Es’kova A.I. 2019. Discussion on methane emission from the water area of the Tatar Strait, the Sea of Japan (basing on the 55-th cruise of RV “Akademik Oparin”). Vestnik DVO RAN = Vestnik of the FEB RAS, 2: 81–87. (In Russ.). DOI:10.25808/08697698.2019.204.2.009
21. Sokolova E.B., Mishukova G.I., Salyuk P.A., Shakirov R.B. 2021. Joint analysis of hydro-optical parameters and dissolved methane in water column of the Bering Sea and the Eastern sector of the Arctic. Underwater Investigations and Robotics, 1(35): 60–69. (In Russ.). DOI:10.37102/1992-4429_2021_35_01_06
22. Gresov A.I., Yatsuk A.V. 2021. Geological implications for gas saturation of bottom sediments in sedimentary basins in the southeastern sector of the East Siberian Sea. Russian Geology and Geophysics, 62(2): 157–172. https://doi.org/10.2113/rgg20194075
23. Gresov A.I., Yatsuk A.V. 2020. Geochemistry and genesis of hydrocarbon gases of the Chaun depression and Ayon sedimentary basin of the East Siberian Sea. Russian Journal of Pacific Geology, 14: 87–96. https://doi.org/10.1134/s1819714020010042