Abstract PDF ENG | Ðåçþìå PDF RUS | Full text PDF RUS |
Abstract. The stages of evolution of two barrier lakes and vegetation development of the Peschany Peninsula (South Primorye) have been reconstructed on the base of multi-proxy study of the sediment sequences, connected with hydroclimatic changes over the past 6300 years. Tephra of the caldera-forming eruption of Baitoushan volcano (946/947 AD) is one of the chronological markers. The Middle Holocene paleolake existed on the accumulative landform, and the lake on the isthmus connecting the paleoisland with the mainland, was formed at the beginning of the Late Holocene. Several periods of watering due to precipitation increase are distinguished in its development. Redeposited freshwater diatoms from subbasalt deposits are bioindicators of sheet wash activation during heavy rains associated with typhoons. Findings of valves of marine and brackish diatoms indicate the passage of extreme storms. Overgrowing of the paleolake began at the end of the Holocene thermal optimum (~5410 years ago). The periods of dryness are usually associated with cooling and a decrease in the intensity of the summer monsoon. The Little Ice Age is the exception: the flooding of the swamp with a relict lake on the isthmus increased sharply. A change of Korean pine/broad-leaved forests with the participation of fir, birches and polydominant broad-leaved forests was established. It is shown that since the Holocene Optimum there have been ecotopes with contrasting heat and moisture supply. Human impact to geosystems was recorded. Paleolimnological studies made possible to identify the Middle-Late Holocene short-period climatic rhythm on the coast of the Amur Bay. The manifestation of cold and warm events has been established, their correlation with regional data and global events has been carried out, and the connection with ocean anomalies and the intensity of the summer monsoon has been shown.
Keywords:
coastal lakes, vegetation, climatic changes, summer monsoon, cyclogenesis, extremal storms, radiocarbon dating, Baitoushan volcano tephra, South Far East
For citation: Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Arslanov Kh.A. Lacustrine paleoarchives of environmental changes of Peschany Peninsula, Sea of Japan (South Primorye). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2023, vol. 7, no. 4, pp. 375–404. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2023.7.4.375-404, https://www.elibrary.ru/vszyzq
Äëÿ öèòèðîâàíèÿ: Ðàçæèãàåâà Í.Ã., Ãàíçåé Ë.À., Ãðåáåííèêîâà Ò.À., Ìîõîâà Ë.Ì., Àðñëàíîâ Õ.À. Îçåðíûå ïàëåîàðõèâû èçìåíåíèé ïðèðîäíîé ñðåäû ïîëóîñòðîâà Ïåñ÷àíûé, ßïîíñêîå ìîðå (þæíîå Ïðèìîðüå). Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2023, ò. 7, ¹ 4, ñ. 375–404.
https://doi.org/10.30730/gtrz.2023.7.4.375-404, https://www.elibrary.ru/vszyzq
References
1. Korotkii A.M., Grebennikova T.A., Pushkar’ V.S., Razzhigaeva N.G., Volkov V.G., Ganzei L.A., Mokhova L.M., Bazarova V.B., Makarova T.R. 1997. [Climatic changes of the territory of Southern Far East in the Late Pleistocene – Holocene]. Vestnik DVO RAN = Vestnik of the FEB RAS, 3: 121–143. (In Russ.).
2. Korotky A.M. 2002. Palynological characteristics and radiocarbon data of Late Quaternary deposits of the Russian Far East (Lower Amur valley, Primor’ye, Sakhalin Island, Kuril Islands). In: Anderson P.M., Lozhkin A.V. (eds.) Late Quaternary vegetation and climate of Siberia and the Russian Far East (Palynological and radiocarbon database). Magadan: SVNTs DVO RAN [NESC FEB RAS], p. 257–369.
3. Mikishin Yu.A., Petrenko T.I., Gvozdeva I.G., Popov A.N., Kuz'min Ya.V., Rakov V.A., Gorbarenko S.A. 2008. [Holocene of South-Western Primorye coast]. Nauchnoe obozrenie = Scientific Review, 1: 8–27. (In Russ.). EDN: PWPORL
4. Mikishin Yu.A., Petrenko T.I., Gvozdeva I.G. 2019. Late phase of Atlantic period of the Holocene in Southern Primorye (Russian Far East). Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 12: 96–107. (In Russ.).
5. Belyanin P.S., Anderson P.M., Lozhkin A.V., Belyanina N.I., Arslanov Kh.A., Maksimov F.E., Gornov D.A. 2019. Vegetation changes in the south of the Russian Far East in the Middle and Late Holocene. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya = Bulletin of the Russian Academy of Sciences. Geographical Series, 2: 69–84. (In Russ.). https://doi.org/10.31857/S2587-55662019269-84
6. Lyashchevskaya M.S. 2015. Dynamics of vegetation of the islands of Peter the Great Bay. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya = Bulletin of the Russian Academy of Sciences. Geographical Series, 3: 143–50. (In Russ.). https://doi.org/10.15356/0373-2444-2015-3-121-128
7. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Chakov V.V., Kopoteva T.A., Klimin M.A., Simonova G.V. 2023. Global cooling events of the Late Holocene preserved in the coastal sediments in the southern Far East of Russia. Geomorphology and Paleogeography, 54(1): 112–130. (In Russ.). https://doi.org/10.31857/S2949178923010115; EDN: GQNMTF
8. Razjigaeva N.G., Ganzey L.A., Lyaschevskaya M.S., Makarova T.R., Kudryavtseva E.P., Grebennikova T.A., Panichev A.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., Malkov S.S. 2019. Climatic and human impacts on landscape development of the Murav'ev Amursky Peninsula (Russian South Far East) in the Middle/Late Holocene and historical time. Quaternary International, 516: 127–140. https://doi.org/10.1016/j.quaint.2017.12.007
9. Subetto D.A. 2009. [ Bottom sediments of the lakes: paleolimnological reconstructions]. SPb.: Izd-vo RGPU A.I. Gertsena, 343 p. (In Russ.). EDN: QKIZRX
10. Subetto D.A., Sapelko T.V., Stolba V.F., Kuznetsov D.D., Ludikova A.V., Neustrueva I.Yu. 2023. Paleolimnology of lakes of western Crimea. Doklady Earth Sciences, 510(1): 329–334. https://doi.org/10.1134/s1028334x23600184
11. Nazarova L.B., Razjigaeva N.G., Diekmann B., Grebennikova T.A., Ganzey L.A., Belyanina N.I., Arslanov K.A., Kaistrenko V.M., Gorbunov A.O., Kharlamov A.A., Golovatyuk L.G., Syrykhh L.S., Subetto D.A., Lisitsyn A.P. 2019. Reconstruction of Holocene environmental changes in North-Western Pacific in relation to paleorecord from Shikotan Island. Doklady Earth Sciences, 486(1): 494–497. https://doi.org/10.1134/s1028334x19050143
12. Lozhkin A.V., Anderson P.M., Brown T.A., Grebennikova T.A., Korzun J.A., Tsigankova V.I. 2021. Lake development and vegetation history in coastal Primor’ye: implications for Holocene climate of the southeastern Russian Far East. Boreas, 50(4): 983–997. https://doi.org/10.1111/bor.12477
13. Mikishin Yu.A., Gvozdeva I.G. 2014. Mid to Late Holocene of Russkyi Island (southern Primorye). Fundamental'nye issledovaniya = Fundamental Research, 3: 516–522. (In Russ.) https://doi.org/10.17513/fr.33706
14. Anderson P.M., Belyanin P.S., Belyanina N.I., Lozhkin A.V. 2017. Evolution of the vegetation cover of Peter the Great Bay western coast in the Late Pleistocene – Holocene. Russian Journal of Pacific Geology. 36(4): 99–108. (In Russ.).
15. Lyashchevskaya M.S., Ganzei K.S., Makarova T.R. 2017. Paleogeographical reconstruction for Stenina Island (Sea of Japan) during Middle-Late Holocene. Biodiversity and Environment of Far East Reserves, 2(11): 3–20. (In Russ.).
16. Lyashchevskaya M.S., Bazarova V.B., Makarova T.R. 2023. [Environment development and the evolution of Gniloe Lake (south-eastern Primorye) during the last 3300 years]. Geomorphology and Paleogeography, 54(3): 108–123. (In Russ.). https://doi.org/10.31857/S2949178923030064
17. Razjigaeva N.G., Ganzey L.A., Makarova T.R., Kornyushenko T.V., Kudryavtseva E.P., Ganzei K.S., Sudin V.V., Kharlamov A.A. 2020. Paleolake of Shkot Island: natural archive of climatic and landscape changes. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2: 230–249. (In Russ.). https://doi.org/10.30730/gtrz.2020.4.2.230-249
18. Razjigaeva N., Ganzey L., Grebennikova T., Kornyushenko T., Ganzei K., Kudryavtseva E., Prokopets S. 2020. Environmental changes and human impact on landscapes as recorded in lagoon-lacustrine sequences of Russky Island, South Far East. J. of Asian Earth Sciences, 197: 104386. https://doi.org/10.1016/j.jseaes.2020.104386
19. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Kopoteva T.A., Kudryavtseva E.P., Belyanin P.S., Panichev A.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., Sudin V.V., Klimin M.A., Kornyushenko T.V. 2021. Holocene mountain landscape development and monsoon variation in the southernmost Russian Far East. Boreas, 50(4): 1043–1058. https://doi.org/10.1111/bor.12545
20. Bazarova V.B., Klimin M.A., Kopoteva T.A. 2018. Holocene dynamics of the east-asian monsoon in the Lower Amur area. Geography and Natural Resources, 39(3): 239–247. https://doi.org/10.1134/s1875372818030071
21. Leipe C., Nakagawa T., Gotanda K., Muller S., Tarasov P. 2015. Late Quaternary vegetation and climate dynamics at the northern limit of the East Asian summer monsoon and its regional and global-scale controls. Quaternary Science Reviews, 116: 57–71. https://doi.org/10.1016/j.quascirev.2015.03.012
22. Razjigaeva N., Ganzey L., Grebennikova T., Ponomarev V. 2023. “Cold-Dry” and “Cold-Wet” events in the Late Holocene, Southern Russian Far East. Climate, 11(4): 91. https://doi.org/10.3390/cli11040091
23. Li C., Wu Ya., Hou X. 2011. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment. Quaternary International, 229(1–2): 67–73. https://doi.org/10.1016/j.quaint.2009.12.015
24. Chen R., Shen J., Li C., Zhang E., Sun W., Ji M. 2015. Mid- to late-Holocene East Asian summer monsoon variability recorded in lacustrine sediments from Jingpo Lake, Northeastern China. Holocene, 25: 454–468. (First online 2014). https://doi.org/10.1177/0959683614561888
25. Kong G.S., Kim K.-O., Kim S.-P. 2013. Characteristics of the East Asian summer monsoon in the South Sea of Korea during the Little Ice Age. Quaternary International, 286: 36–44. https://doi.org/10.1016/j.quaint.2012.07.022
26. Leipe C., Muller S., Hille K., Kato H., Kobe F., Schmidt M., Seyffert K., Spengler III R., Wagner M., Weber A.W., Tarasov P. 2018. Vegetation change and human impacts on Rebun Island. Quaternary Science Reviews, 193: 129–144. https://doi.org/10.1016/j.quascirev.2018.06.011
27. Park J., Park Jinh., Yi S., Kim J.C., Lee E., Choi J. 2019. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean Peninsula. Scientific Reports, 9: 10806. https://doi.org/10.1038/s41598-019-47264-8
28. Park Jinh., Park Jung., Yi S., Lim J., Kim J.C., Jin Q., Choi J. 2021. Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analysis and its implications for past societies of the Korean Peninsula. The Holocene, 31(9): 1489–1500. https://doi.org/10.1177/09596836211019115
29. Lim J., Um In-K., Yi S., Jun C.-P. 2022. Hydroclimate change and its controlling factors during the middle to late Holocene and possible 3.7-ka climatic shift over East Asia. Quaternary Research, 109: 53–64. https://doi.org/10.1017/qua.2022.13
30. Rasskazov S.V., Saranina E.V., Martynov Yu.A., Chashñhin A.A., Maksimov S.O., Brandt I.S., Brandt S.B., Maslovskaya M.N., Kovalenko S.V. 2003. Evolution of late Cenozoic magmatism at the active continental margin of southern Primorye. Russian Journal of Pacific Geology, 22(1): 92–109. (In Russ.). EDN: TUHYYP
31. Gleser Z.I., Jouse A.P., Makarova I.V., Proshkina-Lavrenko A.I., Sheshukova-Poretskaya V.S. (eds) 1974. [ Diatoms of the USSR. Fossil and recent]. Vol. 1. Leningrad: Nauka, 403 p. (In Russ.).
32. Pokrovskaya I.M. 1966. [A technique of cameral works]. In: Pokrovskaya I.M. (ed.) In: Paleopalynology. Leningrad: Nedra, vol. 1: 32–61. (In Russ.).
33. Reimer P., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Ramsey B.C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T., Hogg A.G. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon, 62: 725–757. https://doi.org/10.1017/RDC.2020.41
34. Blaauw M., Christen J.A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6: 457–474. https://doi.org/10.1214/11-BA618
35. Vostretsov E.V. 2022. [Peschany-1 site: from V.K. Arseniev to us]. Trudy IIAE DVO RAN = Proceedings of the Institute of History, Archaeology and Ethnology of the FEB RAS, 35: 7–33. (In Russ.). doi:10.24412/2658-5960-2022-35-7-33; EDN: WARMBO
36. [Archaelogical excavations on Peschany Peninsula, carried out by V.K. Arsen’ev in 1921]. 2020. In: [ Arsen`ev V.K. Full composition of writings]. Vladivostok: Rubezh, vol. 4, B. 1, p. 85–102.
37. Khorev V.A. 1978. [ Archaeological sites of Primorye]. Vladivostok: Dal`nevostochnoe kn. izd-vo, 72 p.
38. Kuzmin Ya.V., Burr G.S., Timothy Jull A.J. 2001. Radiocarbon reservoir correction ages in the Peter the Great Gulf, Sea of Japan, and eastern coast of the Kunashir, Southern Kuriles (Northwestern Pacific). Radiocarbon, 43(2A): 477–481. https://doi.org/10.1017/s0033822200038364
39. Grebennikova T., Razjigaeva N., Ganzey L., Ganzei K., Arslanov Kh., Maksimov F., Petrov A., Kharlamov A. 2020. Evolution of a paleolake on Russian Island (Sea of Japan) in middle-late Holocene: record of sea-level oscillations, extreme storms and tsunami. IOP Conf. Series: Earth and Environmental Science: The 5th International Conference “Ecosystem dynamics in the Holocene”, 438: 012009. https://doi.org/10.1088/1755-1315/438/1/012009
40. Zenkovich V.P. 1962. [ Basics of study of marine coast development]. Moscow: AN SSSR, 710 p.
41. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Kudryavtseva E.P., Arslanov Kh.A., Maksimov F.E., Starikova A.A. 2018. Landscape and environmental changes along the Eastern Primorye coast during the middle to late Holocene and human effects. Journal of Asian Earth Sciences, 158: 160–172. https://doi.org/10.1016/j.jseaes.2018.02.013
42. Likhacheva O.Yu., Pushkar` V.S., Cherepanova M.V., Pavlyutkin B.I. 2009. Zonal diatom scale and the major geobiological events of Primorye Neogene. Vestnik DVO RAN = Vestnik of the FEB RAS, 4: 64–72. (In Russ.). EDN: LATAJZ
43. Avramenko A.S., Cherepanova M.V., Pushkar' V.S., Yarusova S.B. 2015. Diatom characteristics of the Far East siliceous organogenic deposits. Russian Geology and Geophysics, 56(6): 947–958. https://doi.org/10.1016/j.rgg.2015.05.010
44. Dam (van) H., Mertens A., Sinkeldam J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherland. Netherlands Journal of Aquatic Ecology, 28: 117–133. https://doi.org/10.1007/bf02334251
45. Fukumoto Y., Kashima K., Orkhonselenge A., Ganzorig U. 2012. Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment. Quaternary International, 254: 83–91. https://doi.org/10.1016/j.quaint.2011.10.014
46. Kharitonov V.G. 2010. [ Summary of the diatom flora (Bacillariophyceae) of the Northern coast of the Okhotsk Sea]. Magadan: SVNTs DVO RAN [NESC FEB RAS], 189 p. (In Russ.)
47. Liu Y., Wang Q., Fu Ch. 2011. Taxonomy and distribution of diatoms in the genus Eunotia from the Da’erbin Lake and Surrounding Bogs in the Great Xing’an Mountains, China. Nova Hedwigia, 92(1–2): 205–232. https://doi.org/10.1127/0029-5035/2011/0092-0205
48. Krammer K., Lange-Bertalot H. 1991. Bacillariophyceae. Teil 3: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart: Gustav Fischer Verlag, 576 p.
49. Fazlutdinova A., Gabidullin Y., Allaguvatova R., Gaysina L. 2020. Diatoms in Kamchatka’s Hot Spring Soil. Diversity, 12(11): 435. https://doi.org/10.3390/d12110435
50. You Q., Liu Y., Wang Y., Wang Q. 2009. Taxonomy and distribution of diatoms in the genera Epithemia and Rhopalodia from the Xinjiang Uygur Autonomous Region, China. Nova Hedwigia, 89(3–4): 397–430. https://doi.org/10.1127/0029-5035/2009/0089-0397
51. Krammer K., Lange-Bertalot H. 1986. Bacillariophyceae. Teil 1: Naviculaceae. Stuttgart: Gustav Fischer Verlag, 876 p. (Ettl H. et al. (eds) Su?wasserflora von Mitteleuropa; 2).
52. Ncsje A., Aa A.R., Kvarnme M., Sonstegaard E. 1994. A record of late Holocene avalanche activity in Frudalen, Sogndalsdalen, western Norway. Norsk Geologisk Tidsskrift, 74: 71–76.
53. Kopoteva T.A., Kuptsova V.A. 2011. Fire in waterlogged open larch forests in the Amur R. area. Vestnik SVNTc DVO RAN = Bulletin of the NESC FEB RAS, 3: 37–41. (In Russ.). EDN: NXSVYP
54. Kudryavtseva E.P., Bazarova V.B., Lyashchevskaya M.C., Mokhova L.M. 2018. Common ragweed (Ambrosia artemisifolia): the present-day distribution and the presence in the Holocene deposits of Primorsky krai (south of the Russian Far East). Komarovskie Chteniya, 66: 125–146. (In Russ.). https://doi.org/10.25221/kl.66.5
55. Sergusheva E.A. 2007. Early agriculture in Primorye. Vestnik DVO RAN = Vestnik of the FEB RAS, 3: 116–120. (In Russ.). EDN: LASZMX
56. Vostretsov Yu.E. 2009. First cultivators in the coast of the Peter the Great Bay. Vestnik NGU. Seriya Istoriya, filologiya, 8(3): 113–120. EDN: KWCPAP
57. Chen X-Y., Blockley S.P.E., Tarasov P.E., Xu Y.-G., McLean D., Tomlinson E.L., Albert P.G., Liu J.-Q., Muller S., Wagner M., Menzies M.A. 2016. Clarifying the distal to proximal tephrochronology of the Millennium (B-Tm) eruption, Changbaishan Volcano, northeast China. Quaternary Geochronology, 33: 61–75. https://doi.org/10.1016/j.quageo.2016.02.003
58. Akulichev V.A., Astakhov A.S., Malakhov M.I., Aksentov K.I., Karabtsov A.A., Mar’yash A.A., Alatortsev A.V. 2016. The first discovery of cryptotephra of the catastrophic eruptions of the Baitoushan volcano in the tenth century A.D. in the shelf deposits of the Sea of Japan. Doklady Earth Sciences, 469(2): 887–891. https://doi.org/10.1134/S1028334X16080201
59. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu., Sakhno V.G. 2020. B-Tm ash of a catastrophic eruption of Baitoushan Volcano in terrestrial deposits of Primorye as an age marker of the Medieval Warm Period in the Holocene. Doklady Earth Sciences, 494(2): 779–786. https://doi.org/10.1134/S1028334X20100116
60. Sakhno V.G. 2007. Chronology of eruptions, composition, and magmatic evolution of the Paektusan Volcano: evidence from K-Ar, 87Sr/ 86Sr è ? 18Î. isotope data. Doklady Earth Sciences, 412(1): 22–28. doi:10.1134/S1028334X07010060
61. Krammer K., Lange-Bertalot H. 1988. Bacillariaceae. Teil 2: Epithemiaceae, Surirellaceae. Stuttgart: Gustav Fischer Verlag, 536 p.
62. Wanner H., Solomina O., Grosjean M., Ritz S.P., Jetel M. 2011. Structure and origin of Holocene cold events. Quaternary Science Review, 30: 3109–3123. https://doi.org/10.1016/j.quascirev.2011.07.010
63. Constantine M., Kim M., Park J. 2019. Mid- to late Holocene cooling events in the Korean Peninsula and their possible impact on ancient societies. Quaternary Research, 92(1): 98–108. https://doi.org/10.1017/qua.2018.132
64. Selvaraj K., Chen C.T.A., Lou J.-Y. 2007. Holocene East Asian monsoon variability: Links to solar and tropical Pacific forcing. Geophysical Research Letters, 34: L01703. https://doi.org/10.1029/2006GL028155
65. Steinhilber F., Beer J., Frohlich C. 2009. Total solar irradiance during the Holocene. Geophysics Research Letters, 36(19): L19704. https://doi.org/10.1029/2009GL040142
66. Sun Y., Oppo D.W., Xiang R., Liu W., Gao S. 2005. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography, 20(4): PA4005. https://doi.org/10.1029/2004PA001061
67. Ruan J., Xu Y., Ding S., Wang Y., Zhang X.A. 2015. A high resolution record of sea surface temperature in southern Okinawa Trough for the past 15,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 209–215. https://doi.org/10.1016/j.palaeo.2015.03.007
68. Stott L., Cannariato K., Thunell R., Haug G.H., Koutavas A., Lund S. 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431: 56–59. https://doi.org/10.1038/nature02903
69. Moy C.M., Seltzer G., Rodbell D.T., Anderson D.M. 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420(6912): 162–165. https://doi.org/10.1038/nature01194
70. Lee H., Lee J.-Y., Lim J. 2021. Holocene hydrologic fluctuations on the southern coast of Korea and their link to ENSO activity. Geosciences Journal, 26(1): 129–140. https://doi.org/10.1007/s12303-021-0020-8
71. Woodruff J.D., Donnelly J.P., Okusu A. 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Reviews, 28(17–18): 1774–1785. https://doi.org/10.1016/j.quascirev.2009.02.005
72. Schmidt M., Leipe Ch., Becker F., Goslar T., Hoelzmann Ph., Mingram J., Muller S., Tjallingii R., Wagner M., Tarasov P.E. 2019. A multi-proxy palaeolimnological record of the last 16,600 years from coastal Lake Kushu in northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 613–626. https://doi.org/10.1016/j.palaeo.2018.11.010
73. Solomina O.N., Bradley R.S., Hodgson D.A., Ivy-Ochs S., Jomelli V., Mackintosh A.N., Nesje A., Owen L.A., Wanner H., Wiles G.C., Young N.E. 2015. Holocene glacier fluctuations. Quaternary Science Reviews, 111: 9–34. https://doi.org/10.1016/j.quascirev.2014.11.018
74. Jian Z.M., Wang P., Saito Y., Wang J.L., Pflaumann U., Oba T., Cheng X.R. 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth and Planetary Sciences Letters, 184(1): 305–319. https://doi.org/10.1016/s0012-821x(00)00321-6
75. Walker M., Head M.J., Lowe J., Berkelhammer M., Bjorck S., Cheng H., Cwynar L.C., Fisher D., Gkinis V., Long A., Newnham R., Rasmussens S., Weiss H. 2019. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal of Quaternary Science, 34(3): 173–186. https://doi.org/10.1002/jqs.3097
76. Sapelko T.V. 2022. Holocene subdivisions according to the new international stratigraphic scale and the Blitt-Sernander scheme. In: Subetto D.A. (ed.) [ Dynamic of ecosytems in Holocene]. Saint Petersburg: Izd-vo RGPU A.I. Gertsena, p. 359–363.
77. Stebich M., Rehfeld K., Schlutz F., Tarasov P.E., Liu J., Mingram J. 2015. Holocene vegetation and climate dynamic of NE China based on the pollen record from Sihailongwan Maar Lake. Quaternary Science Reviews, 124: 275–289. https://doi.org/10.1016/j.quascirev.2015.07.021
78. Katsuki K., Yang D.Y., Seto K., Yasuhara M., Takata H., Otsuka M., Nakanishi T., Yoon Y., Um I.K., Cheung R.C.W., Khim B.K., Kashima K. 2016. Factors controlling typhoons and storm rain on the Korean Peninsula during the Little Ice Age. Journal Paleolimnology, 55: 35–48. https://doi.org/10.1007/s10933-015-9861-3
79. Byshev V.I., Neiman V.G., Ponomarev V.I., Romanov Y.A., Serykh I.V., Tsurikova T.V. 2014. The influence of global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Doklady Earth Sciences, 458(1): 1116–1120. https://doi.org/10.1134/S1028334X14090025
80. Razzhigaeva N.G., Grebennikova T.A., Ganzey L.A., Ponomarev V.I., Kharlamov A.A. 2022. Response of the lake ecosystem of the Lesser Kuril Ridge to paleoclimatic and seismic events. Izv., Atmospheric and Oceanic Physics, 58(11): 1377–1397. https://doi.org/10.1134/S0001433822110068
81. Prushkovskaya I.A. 2022. [ Change of paleoenvironments of Peter the Great Bay of the Sea of Japan in Late Holocene (on the base of siliceous microalgae studying) ]: extended abstract … Cand. Sci. (Geology and Mineralogy). V.I. Il'ichev Pacific Oceanological Institute of the FEÂ RAS, Vladivostok.