Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2023, vol. 7, no. 4, pp. 357–374

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2023.7.4.357-374, https://www.elibrary.ru/zbrvjc


Geological evidence of strong tsunami manifestations on the Iturup Island (Kuril Islands) at last 3500 years
1Nadezhda G. Razjigaeva, https://orcid.org/0000-0001-7936-1797, nadyar@tigdvo.ru
1Larisa A. Ganzey, https://orcid.org/0000-0002-2538-6603, lganzey@mail.ru
1Tatiana A. Grebennikova, https://orcid.org/0000-0002-5805-391X, nadyar@tigdvo.ru
2Andrey A. Kharlamov, https://orcid.org/0000-0003-2623-5388
3Artem V. Loskutov, https://orcid.org/0000-0003-1619-3671, a.loscutov@imgg.ru
3Rustam F. Bulgakov, https://orcid.org/0000-0001-9095-3785, r.bulgakov@imgg.ru
1Pacific Geographical Institute of the Far Eastern Branch of RAS, Vladivostok, Russia
2Shirshov Institute of Oceanology of RAS, Moscow, Russia
3Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. The distribution of tsunami deposits in the lacustrine-swamp sections on the Kasatka Bay coast is analyzed. The main objects were a swamp formed on the place of overgrown lagoon-type lake located behind dune ridge, and a low swampy isthmus between Oktyabrskoe and Srednee lakes. Five major events have been identified, run-up parameters and age have been determined on the base of radiocarbon dating and tephrostratigraphy. Diatom analysis data were used to confirm the marine origin of the sand. Established events are correlated with data on adjacent islands and the Eastern Hokkaido coast. A trace of only one strong historical tsunami was found, its deposits lie above marking volcanic ash Ta-a (1739) of the Tarumai Volcano, Hokkaido. The tsunami took place in the second half of the 18th century. Perhaps this is a trace of 1780 AD tsunami, the source was located near Urup Island. Four paleotsunamis are well compared in age with the megatsunamis of the region (17th, 13th centuries, 1.5; 2.3–2.4 ka), which most clearly manifested on the Eastern Hokkaido coasts and left sea sands and silts sheets in marshes of the Lesser Kuril Ridge and Kunashir Island. On Iturup, the thickness of tsunami deposits and wide of sand cover is much less. It has been suggested that the peat section of Iturup recorded the run-up values in the distal zone of the Late Holocene megatsunami, which had sources in the southernmost of the Kuril-Kamchatka Trench. Regional strong tsunamis occurred in the period of instrumental observations did not leave geological evidence in the studied sections.


Keywords:
paleotsunami, radiocarbon dating, tephra, diatoms, South Kuril Islands, Holocene

For citation: Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Kharlamov A.A., Loskutov A.V., Bulgakov R.F. Geological evidence of strong tsunami manifestations on the Iturup Island (Kuril Islands) at last 3500 years. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2023, vol. 7, no. 4, pp. 357–374. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2023.7.4.357-374, https://www.elibrary.ru/zbrvjc

Äëÿ öèòèðîâàíèÿ: Ðàçæèãàåâà Í.Ã., Ãàíçåé Ë.À., Ãðåáåííèêîâà Ò.À., Õàðëàìîâ À.À., Ëîñêóòîâ À.Â., Áóëãàêîâ Ð.Ô. Ãåîëîãè÷åñêèå ñâèäåòåëüñòâà ïðîÿâëåíèé ñèëüíûõ öóíàìè íà ïîáåðåæüå îñòðîâà Èòóðóï (Êóðèëüñêèå îñòðîâà) çà ïîñëåäíèå 3500 ëåò. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2023, ò. 7, ¹ 4, ñ. 357–374.
https://doi.org/10.30730/gtrz.2023.7.4.357-374, https://www.elibrary.ru/zbrvjc


References

1. Minoura K., Nakaya S. 1991. Traces of tsunami preserved in inter-tidal lacustrine and marsh deposits: some examples from Northeast Japan. Journal of Geology, 99(2): 265–287. https://doi.org/10.1086/629488

2. Nanayama F., Satake K., Furukawa R., Shimokawa K., Atwater B.F., Shigeno K., Yamaki S. 2003. Unusually large earthquakes inferred from tsunami deposits along the Kurile trench. Nature, 424(6949): 660–663. https://doi.org/10.1038/nature01864

3. Nanayama F. 2021. Evidence of giant earthquakes and tsunamis of the seventeenth-century type along the southern Kuril subduction zone, eastern Hokkaido, northern Japan: a review. In: Characterization of modern and historical seismic-tsunamic events, and their global–societal impacts. London: Geological Society, Special Publ., 501: 131–157. https://doi.org/10.1144/sp501-2019-99

4. Pinegina T.K., Bazanova L.I., Zelenin E.A., Bourgeois J., Kozhurin A.I., Medvedev I.P., Vydrin D.S. 2018. Holocene tsunamis in Avachinsky Bay, Kamchatka, Russia. Pure and Applied Geophysics, 175(4): 1485–1506. https://doi.org/10.1007/s00024-018-1830-0

5. Kaistrenko V.M. 2019. Peculiarity of using the paleotsunami data for the tsunami hazard estimation. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(4): 403–416. https://doi.org/10.30730/2541-8912.2019.3.4.403-416

6. MacInnes B., Kravchunovskaya E., Pinegina T., Bourgeois J. 2016. Paleotsunamis from the central Kuril Islands segment of the Japan-Kuril-Kamchatka subduction zone. Quaternary Research, 86(1): 54–66. https://dx.doi.org/10.1016/j.yqres.2016.03.005

7. Iliev A.Ya., Kaistrenko V.M., Gretskaya E.V., Tikhonchuk E.A., Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Kharlamov A.A. 2005. Holocene tsunami traces on Kunashir Island, Kurile subduction zone. In: Tsunamis: Sources, Monitoring and Coastal Hazards. Kluwer Publ., p. 171–192. https://doi.org/10.1007/1-4020-3331-1_10

8. Razzhigaeva N.G., Ganzey L.A., Grebennikova T.A., Kharlamov A.A., Arslanov Kh.A., Kaistrenko V.M., Gorbunov A.O., Petrov A.Yu. 2017. The problem of past megatsunami reconstructions on the southern Kurils. Russian Journal of Pacific Geology, 11(1): 34–45. https://dx.doi.org/10.1134/S1819714017010079

9. Razzhigaeva N.G., Grebennikova T.A., Ganzey L.A., Ponomarev V.I., Kharlamov A.A. 2022. Response of the lake ecosystem of the Lesser Kuril Ridge to paleoclimatic and seismic events. Izvestiya, Atmospheric and Oceanic Physics, 58(11): 1377–1397. https://doi.org/10.1134/S0001433822110068

10. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Belyanina N.I., Ganzei K.S., Kaistrenko V.M., Arslanov Kh.A., Maksimov F.E., Rybin A.V. 2019. Multiproxy record of late Holocene climatic changes and natural hazards from paleolake deposits of Urup Island (Kuril Islands, North-Western Pacific). Journal of Asian Earth Sciences, 181: 103916. https://doi.org/10.1016/J.JSEAES.2019.103916

11. Bulgakov R.F., Ivanov V.V., Khramushin V.N., Pevzner M.M., Sulerzhitsky L.D. 1995. [Study of paleotsunami traces for the tsunami zoning]. Physics of the Earth, 2: 18–27. (In Russ.).

12. Bergal-Kuvikas O.V., Smirnov S.Z., Agatova A.R., Degterev A.V., Razjigaeva N.G., Pinegina T.K., Portnyagin M.V., Karmanov N.S., Timina T.Yu. 2023. The Holocene explosive eruption on Vetrovoi Isthmus (Iturup Island) as a source of the marker tephra layer of 2000 cal. yr BP in the Central Kuril island arc. Doklady Earth Sciences, 511(1): 550–557. https://doi.org/10.1134/S1028334X23600597

13. Ishibashi K., Satake K. 1998. Problems on forecasting great earthquakes in the subduction zones around Japan by means of paleoseismology. Zisin (Journal of the Seismological Society of Japan. 2nd ser.), 50(appendix): 1–21. https://doi.org/10.4294/zisin1948.50.appendix_1

14. Dawson A.G., Shi S. 2000. Tsunami deposits. Pure and Applied Geophysics, 157: 875–897. https://doi.org/10.1007/s000240050010

15. Pinegina T.K., Bourgeois J. 2001. Historical and paleo-tsunami deposits on Kamchatka, Russia: long-term chronologies and long-distance correlations. Natural Hazards and Earth System Sciences, 1(4): 177–185. https://doi.org/10.5194/nhess-1-177-2001

16. Atwater B.F., Furukawa R., Hemphii-Haley E., Ikeda Y., Kashima K., Kawase K., Kesley H.M., Moore A.L., Nanayama F., Nishimura Y., Odagiri S., Ota Y., Park S.-Ch., Satake K., Sawai Y., Shimokawa K. 2004. Seventeenth-century uplift in eastern Hokkaido, Japan. The Holocene, 14(4): 487–501. https://doi.org/10.1191/0959683604hl726rp

17. Tsunamiites. Features and implications. 2008. Amsterdam: Elsevier Science, 411 p. https://doi.org/10.1016/B978-0-444-51552-0.X0001-X

18. Dura T., Hemphill-Haley E. 2020. Diatoms in tsunami deposits. In: Engel M., Pilarxzyk J., May S.M. et al. (eds.) Geological records of tsunamis and other extreme waves. Amsterdam: Elsevier, p. 291–319. https://doi.org/10.1016/B978-0-12-815686-5.00014-6

19. Reimer P., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Ramsey B.C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T., Hogg A.G. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon, 62(4): 725–757. https://doi.org/10.1017/RDC.2020.41

20. Atlas of the Kuril Islands. 2009. Moscow; Vladivostok: DIK, 516 p. (In Russ.).

21. NCEI/WDS Global historical tsunami database. National Geographical data center. URL: http://www.ngdc.noaa.gov/hazard/tsu.shtml (accessed 15 August 2023); https://doi.org/10.7289/V5PN93H7

22. Soloviev S.L. 1978. [Main data on tsunami on the Pacific coast of the USSR, 1737–1976]. In: Savarensky U.F., Soloviev S.L. (eds.) [ Study of tsunami in the open ocean ]. Moscow: Nauka, p. 61–128. (In Russ.). URL: https://www.geokniga.org/bookfiles/geokniga-izuchenie-cunamiv-otkrytom-okeane.pdf

23. Solovieva O.N. 2000. [Manifestation of catastrophic tsunami near Russian coasts]. In: Sobolev G.A. (ed.) [ Natural Hazards of Russia. Vol. 2. Seismic Hazards]. Moscow: KRUK, p. 231–234. (In Russ.).

24. Shubin V.O. 1999. [Settlements of the Russian-American Company on Kuril Islands]. In: Bolkhovitinov N.N. (ed.) [ Russian America 1799–1999: Proceeding of Intern. Conf. «To 200-year of foundation of the Russian-American Company. 1799–1999» ], Moscow, 6–10 Sept. 1999. Moscow: IGH RAS, 220–239. (In Russ.). URL: https://www.booksite.ru/fulltext/russ_america/05_14.html

25. Sawai Y. 2020. Subduction zone paleoseismology along the Pacific coast of northeast Japan – progress and remaining problems. Earth-Science Reviews, 208: 103261. https://doi.org/10.1016/j.earscirev.2020.103261

26. Gusiakov V.K. 2016. Tsunamis on the Russian Pacific coast: history and current situation. Russian Geology and Geophysics, 57(9): 1259–1268. https://doi.org/10.1016/j.rgg.2016.08.011

27. Shevchenko G.V., Loskutov A.V., Kaystrenko V.M. 2018. A new map of tsunami hazard for the South Kuril Islands. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(3): 225–238. (In Russ.). https://doi.org/10.30730/2541-8912.2018.2.3.225-238

28. Korolev Yu.P., Zhukova L.D., Zolotukhina N.D., Klochkov A.A., Kulikov E.A., Kurkin E.A., Kruglikov A.A., Levin B.V., Poplavsky A.A., Terentiev N.S. 1997. Manifestation of the 4 October 1994 tsunami on the coast of Kuril Islands. In: Sergeev K.F. (ed.) Manifestations of certain tsunami. 1993 and 1994 Tsunami on the Russian coast. Yuzhno-Sakhalinsk: IMGG FEB RAS, p. 74–92. (In Russ.).

29. [ The 4(5) October 1994 Shikotan earthquake and tsunami ]. 2015. Yuzhno-Sakhalinsk: IMGG FEB RAS, 128 p. (In Russ.).

30. Kaistrenko V.M., Shevchenko G.V., Ivelskaya T.N. 2012. Effects of the Tohoku tsunami of March 11, 2011 on the Pacific coast of Russia. Seismic Instruments, 48(2): 124–143. https://doi.org/10.3103/S0747923912020041

31. Bulgakov R.F. 1994. [ History of development of southern islands of the Great Kuril Ridge in the Pleistocene ]. Thesis… Cand. of Sci. (Geography). Moscow State University, Moscow. (Manuscript). (In Russ.).

32. Bulgakov R. 1996. Reconstruction of Quaternary history of southern Kuril Islands. Journal of Coastal Research, 12(4): 930–939. URL: https://www.jstor.org/stable/4298543

33. Lozhkin A., Minyuk P., Cherepanova M., Anderson P., Finney B. 2017. Holocene environments of central Iturup Island, southern Kuril archipelago, Russian Far East. Quaternary Research, 88: 23–38. https://doi.org/10.1017/qua.2017.21

34. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Degterev A.V., Ezhkin A.K., Rybin A.V., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu. 2022. The records of environmental changes in lacustrine–swamp sequences within the mountain area of Iturup Island since the Late Glacial Period. Russian Journal of Pacific Geology, 16(2): 116–130. https://doi.org/10.1134/s1819714022020087

35. Lozhkin A.V., Cherepanova M.V., Anderson P.M., Minyuk P.S., Finney B.P. 2022. Glukhoye Lake: Middle to Late Holocene environments of Kunashir Island (Kuril Archipelago, Russian Far East). Boreas, 51(2): 364–384. https://doi.org/10.1111/bor.12565

36. Nazarova L., Grebennikova Ò.À., Razjigaeva N.G., Ganzey L.À., Belyanina N.I., Arslanov Kh.À., Kaistrenko V.Ì., Gorbunov À.Î., Kharlamov À.À., Rudaya N., Palagushkina O., Biskaborn B.K., Diekmann B. 2017. Reconstruction of Holocene environmental changes in Southern Kurils (North-Western Pacific) based on palaeolake sediment proxies from Shikotan Island. Global and Planetary Change, 159: 25–36. https://doi.org/10.1016/j.gloplacha.2017.10.005

37. Nazarova L., Razjigaeva N.G., Ganzey L.A., Makarova T.R., Lyaschevskaya M.S., Biskaborn B.K., Hoelzmann P., Golovatyuk L.V., Diekman B. 2023. The middle to Late Holocene environments on the Iturup Island (Kurils, North Western Pacific). Quaternary International, 644–645: 5–20. https://doi.org/10.1016/j.quaint.2021.05.003

38. Degterev A.V., Pinegina T.K., Razjigaeva N.G., Kozhurin A.I. 2021. Holocene records of volcanic eruptions on Iturup Island. Priroda = Nature, 12: 17–22. (In Russ.).

39. Razzhigaeva N.G., Matsumoto A., Nakagawa M. 2016. Age, source, and distribution of Holocene tephra in the southern Kurile Islands: Evaluation of Holocene eruptive activities in the southern Kurile arc. Quaternary International, 397: 63–78. http://doi.org/10.1016/j.quaint.2015.07.070

40. Razzhigaeva N.G., Ganzey L.A., Grebennikova T.A., Kharlamov A.A. 2006. Holocene manifestations of paleotsunamis at the Lesser Kuril arc (Zelenyi I.). Volcanology and Seismology, 4: 57–73. (In Russ.).

41. Sawai Yu. 2002. Evidence for 17th-century tsunamis generated on the Kuril-Kamchatka subduction zone, Lake Tokotan, Hokkaido, Japan. J. of Asian Earth Sciences, 20(8): 903–911. https://doi.org/10.1016/s1367-9120(01)00077-3

42. Hirakawa K., Nakamura Y., Nishimura Y. 2005. Holocene large-sized tsunamis: including the tsunami of the 2003 Tokachi-oki earthquake. Chikyu Monthly (Extra Edition), 49: 173–180. (Digital Archive).

43. Sawai Yu., Kamataki T., Shishikura M., Nasu H., Okamura Y., Satake K., Thomson K.H., Matsumoto D., Fujii Y., Komatsubara J., Aung T.T. 2009. Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. Journal of Geophysical Research: Solid Earth, 114(B1): BO1319. https://doi.org/10.1029/2007JB005503

44. Nanayama F., Satake K., Shimokawa K., Furukawa R., Shigeno K. 2000. Evaluation of frequency and invasion area of large earthquake tsunamis along the Kurile subduction zone by postulated tsunami deposits. In: Interim Report on Active Fault and Paleoearthquake Research in the 1999 Fiscal Year. Geological Survey of Japan Interim Report # EQ/00/2 (Annual Meeting of the Geological Society of Japan). Tsukuba, p. 1–17. URL: https://www.jstage.jst.go.jp/article/geosocabst/2000/0/2000_97_2/_article/-char/en

45. Nanayama F., Shigeno K., Soeda Y., Furukawa R., Okahashi H., Saito K., Yokoyama Y., Satake K., Nakagawa M. 2003. Tsunami traces in the 17th century and evaluations of their inundation limits from distribution of event deposits along the southern Tokachi coasts, eastern Hokkaido, northern Japan. Annual Report on Active Fault Paleoearthquake Researches, 3: 297–314. URL: https://www.gsj.jp/data/actfault-eq/h14seika/pdf/tokachi.pdf

46. Nanayama F., Furukawa R., Shigeno K., Makino A., Soeda Y., Igarashi Y. 2007. Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sedimentary Geology, 200(3–4): 275–294. https://doi.org/10.1016/j.sedgeo.2007.01.008

47. Satake K. 2017. Great earthquakes in the 17th century along the Kuril and Japan Trenches. Bull. of the Earthquake Research Institute, University of Tokyo, 92: 31–47. URL: http://www.eri.u-tokyo.ac.jp/BERI/pdf/IHO922401.pdf

48. Ishizawa T., Goto K., Yokoyama Y., Miyairi Y., Sawada C., Nishimura Y., Sugawara D. 2017. Sequential radiocarbon measurement of bulk peat for high-precision dating of tsunami deposits. Quaternary Geochronology, 41: 202–210. https://doi.org/10.1016/j.quageo.2017.05.003

49. Takashimizu Y., Nishina K., Kakami G., Sato Y., Okamura S., Nakanishi R., Tamura M., Hirose W., Takahashi R., Ishimary S. 2017. Identification of 17th-centure tsunami deposits on the northern Hidaka coast, Hokkaido, northern Japan. The Quaternary Research (Daiyonki-Kenkyu), 56(1): 1–9. https://doi.org/10.4116/jaqua.56.1

50. Ioki K., Tanioka Y. 2016. Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data. Earth and Planetary Science Letters, 433: 133–138. https://doi.org/10.1016/j.epsl.2015.10.009

51. Sawai Y., Satake K., Kamataki T., Nasu H., Shishikura M., Atwater B.F., Horton B.P., Kelsey H.M., Nagumo T., Yamaguchi M. 2004. Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science, 306(5703): 1918–1920. https://doi.org/10.1126/science.1104895

52. Nanayama F., Shigeno K., Miura K., Makino A., Furukawa R., Satake K., Saito K., Sagayama T., Nakagawa M. 2002. Evaluation of tsunami inundation limits from distribution of event deposits along the Kuril subduction zone, eastern Hokkaido: comparison of the Tokachi and Nemuro-Kushiro coasts. Annual Report on Active Fault Paleoearthquake Researches, 2: 209–222.

53. Nanayama F. 2018. The geomorphological evolution of Hashirikotan barrier spit system controlled by regional seismotonics, southern Kuril subduction zone. In: Proceedings of the International Meeting on Eruptive History and Informatics. Kumamoto: Kumamoto University, 2: 4–26.
URL: https://www.researchgate.net/publication/322818218_The_geomorphological_evolution_of_Hashirikotan_barrier_spit_system_controlled_
by_regional_seismotonics_southern_Kuril_subduction_zone

54. Nanayama F., Watanabe K., Shigeno K., Ishii M., Ishiwata K., Inokuma S. 2018. Giant earthquake tsunami traces and related regional crustal movements recognized around the Kuril subduction zone, eastern Hokkaido, northern Japan. The Journal of the Geological Society of Japan, 124(6): 413–433. https://doi.org/10.5575/geosoc.2018.0013

55. Kelsey H., Satake K., Sawai Y., Sherrod B., Shimokawa K., Shishikura M. 2006. Recurrence of postseismic coastal uplift, Kuril subduction zone, Japan. Geophysical Research Letters, 33: L13315. https://doi.org/10.1029/2006GL026052

56. Nanayama F., Shigeno K., Shitaoka Y., Furukawa R. 2011. Geological study of unusual tsunami deposits in the Kuril subduction zone for mitigation of tsunami disasters. In: The tsunami Treat – Research and Technology. Publisher InTech, 283–298. https://doi.org/10.5772/14249

57. Soeda Y., Nanayama F., Shigena K., Furukawa R., Kumasaki N., Tsutsumi Y., Kurumazuka H., Sawai Y., Satake K., Nakagawa M., Yamada G., Katsuragawa M., Akamatsu M., Ishii M. 2003. Nine tsunami sand deposits in peat layers at the historic site of Kokutaija Temple in Akkeshi Town, Eastern Hokkaido, and their correlation with regional tsunami events. Report on Active Faults and Paleoearthquakes, 3: 285–296. URL: https://www.gsj.jp/data/actfault-eq/h14seika/pdf/akkeshi.pdf

58. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Ivanova E.D., Kharlamov A.A., Kaistrenko V.M., Arslanov Kh.A., Chernov S.B. 2014. The Tohoku Tsunami of 11 March 2011: The key event to understanding tsunami sedimentation on the coasts of closed bays of the Lesser Kuril Islands. Pure Applied Geophysics, 171(12): 3307–3328. https://doi.org/10.1007/s00024-014-0794-y

59. Razzhigaeva N.G., Ganzey L.A., Grebennokova T.A., Kharlamov A.A., Iliev A.Ya., Kaistrenko V.M. 2008. The geological record of paleotsunamis striking Shikotan Island, in the Lesser Kurils, during Holocene Time. Journal of Volcanology and Seismology, 2(4): 262–277.