Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2023, vol. 7, no. 3, pp. 223–242

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191,
https://doi.org/10.30730/gtrz.2023.7.3.223-242, https://www.elibrary.ru/kttdqi


Study of seismotectonic deformations of the Earth’s crust in the Altai-Sayan mountain region. Part I
Naylya A. Sycheva, https://orcid.org/0000-0003-0386-3752, ivtran@mail.ru
Schmidt Institute of Physics of the Earth of RAS, Moscow, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. Seismotectonic deformations (STD) of the Earth’s crust in the Altai-Sayan mountain region were studied. The STD calculation was performed on the basis of the approaches proposed in the works of Yu.V. Riznichenko and S.L. Yunga. Estimation of seismicity distribution and calculation of the average annual STD velocity (STD intensity) were made on the basis of the catalog of earthquakes that occurred in 1997–2020 (15 669 seismic events). Areas of manifestation of intense seismotectonic deformations and seismic activity are identified. A high level of seismicity and the average annual STD velocity (10–7 year–1) is noted in the areas where strong seismic events occurred (Chuya earthquake on September 27, 2003, Tuva earthquakes on December 27, 2011 and February 26, 2012). The study of STD directionality is based on data on the focal mechanisms of earthquake sources (591 events) that occurred from 1963 to 2021. The classification of STD modes was used to construct the STD map. According to the STD maps, the direction of the shortening axes was determined, which changes from west to east from northwest to northeast. The study area is characterized by a variety of deformation conditions: compression, transpression, strike-slip, transtension, tension, etc. Based on the averaged strain tensors, the distributions of the Lode–Nadai coefficient, angle of generalized plane strain, and vertical component are calculated and plotted. The zones where various modes of deformation, such as simple compression, the predominance of simple compression, shear, the predominance of simple tension and simple tension are manifested, are distinguished in the study area. Both uplift and subsidence of the Earth’s crust are noted in the study area depending on the deformation mode.


Keywords:
earthquake, focal mechanism, STD modes, elongation and shortening of strain axes, STD intensity,
Lode–Nadai coefficient, Altai-Sayan region

For citation: Sycheva N.A. Study of seismotectonic deformations of the Earth’s crust in the Altai-Sayan mountain region. Part I. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2023, vol. 7, no. 3, pp. 223–242. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2023.7.3.223-242, https://www.elibrary.ru/kttdqi


References

1. Berzin N.A., Coleman R.G., Dobretsov N.L. et al. 1994. Geodynamic map of the western part of the Paleo-Asian ocean. Geologiya i Geofizika = Russian Geology and Geophysics, 35: 5–22.

2. Dobretsov N.L., Kulakov I.Yu., Polyansky O.P. 2013. Geodynamics and stress-strain patterns in different tectonic settings. Russian Geology and Geophysics, 54(4): 357–380. https://doi.org/10.1016/j.rgg.2013.03.001

3. Zonenshain L.P., Kuzmin M.I., Natapov L.M. 1990. [ Tectonics of lithospheric plates in the territory of the USSR ]. B. 1. Moscow: Nedra, 328 p. (In Russ.).

4. Berzin N.A., Kungurtsev L.V. 1996. Geodynamic interpretation of Altai-Sayan geological complexes. Geologiya i Geofizika = Russian Geology and Geophysics, 37(1): 56–73.

5. Dobretsov N.L. 2003. Evolution of structures of the Urals, Kazakhstan, Tien Shan and Altai-Sayan region within the Ural-Mongolian Fold Belt (Paleo-Àsian ocean). Russian Geology and Geophysics, 44(1–2): 5–27. EDN: PARCBJ

6. Buslov M.M. 2011. Tectonics and geodynamics of the Central Asian Foldbelt: the role of Late Paleozoic large-amplitude strike-slip faults. Russian Geology and Geophysics, 52(1): 52–71. https://doi.org/10.1016/j.rgg.2010.12.005

7. Nurmagambetov A., Sadykov A., Timush A.V., Khaidarov M.S., Vlasova A.A., Mikhailova N.N., Sabitov M.M., Umirzakova A., Gapich V.A. 1996. [The Zaisan earthquake of June 14, 1990]. In: Earthquakes in the USSR in 1990. Moscow: GS RAS, p. 53–59. (In Russ.).

8. Yemanov A.F., Yemanov A.A., Fateev A.V., Soloviev V.M., Shevkunova E.V., Gladyshev E.A., Antonov I.A., Korabelshchikov D.G., Podkorytova V.G., Yankaitis V.V. et al. 2021. Seismological studies in the Altai-Sayan mountain region. Rossiiskii seismologicheskii zhurnal = Russian Journal of Seismology, 3(2): 20–51. (In Russ.). https://doi.org/10.35540/2686-7907.2021.2.02

9. Leskova E.V., Yemanov A.A. 2006. Deformation pattern for the epicentral area of the Chuya earthquake (September 27, 2003, K = 17, Gorny Altai) according to analysis data for aftershock focal mechanisms. Physical mesomechanics, 9(1): 51–55. (In Russ.). EDN: IJGIRL

10. Melnikova V.I., Gileva N.A., Radziminovich Ya.B., Seredkina A.I. 2010. The Kultuk earthquake of August 27, 2008. In: Earthquakes in Russia in 2008, p. 120. (In Russ.).

11. Yemanov A.F., Yemanov A.A., Leskova E.V., Seleznev V.S., Fateev A.V. 2014. The Tuva earthquakes of December 27, 2011, ML = 6.7, and February 26, 2012, ML = 6.8, and their aftershocks. Doklady Earth Sciences, 456(1): 594–597. https://doi.org/10.1134/s1028334x14050249

12. Yemanov A.F., Yemanov A.A., Fateev A.V., Leskova E.V., Shevkunova E.V., Podkorytova V.G. 2014. Technogenic seismicity of the Kuzbass coal mines (Bachat earthquakes in 2012–2013). In: Earthquakes in Russia in 2012. Obninsk: GS RAS, p. 104–108. (In Russ.).

13. Yemanov A.F., Yemanov A.A., Fateev A.V., Leskova E.V., Shevkunova E.V., Podkorytova V.G. 2014. Mining-induced seismicity at open pit mines in Kuzbass (Bachatsky earthquake on June 18, 2013). Journal of Mining Science, 50(2): 224–228.

14. Kocharyan G.G., Kishkina S.B., Budkov A.M., Ivanchenko G.N. 2019. On the genesis of the 2013 Bachat earthquake. Geodynamics & Tectonophysics, 10(3): 741–759. (In Russ.). https://doi.org/10.5800/GT-2019-10-3-0439; EDN: CHOELE

15. Bachmanov D.M., Kozhurin A.I., Trifonov V.G. 2017. The active faults of Eurasia database. Geodynamics & Tectonophysics, 8(4): 711–736. (In Russ.). https://doi.org/10.5800/gt-2017-8-4-0314; EDN: ZWRGN

16. Goldin S.V., Timofeev V.Yu., Ardyukov D.G. 2005. Fields of the Earth's surface displacement in the Chuya earthquake zone in Gornyi Altai. Doklady Earth Sciences, 405À(9): 1408–1413. EDN: LJKWIT

17. Timofeev V.Yu., Ardyukov D.G., Kale E., Duchkov A.D., Zapreeva E.A., Kazantsev S.A., Rusbek F., Bryuniks K. 2006. Displacement fields and models of current motion in Gorny Altai. Russian Geology and Geophysics, 47(8): 915–929. EDN: TQNFQZ

18. Timofeev V.Yu., Ardyukov D.G., Solov’ev V.M., Shibaev S.V., Petrov A.F., Gornov P.Yu., Shestakov N.V., Boiko E.V., Timofeev Yu.A. 2012. Plate boundaries in the Far East region of Russia (from GPS measurement, seismic-prospecting, and seismological data). Russian Geology and Geophysics, 53(4): 376–391. https://doi.org/10.1016/j.rgg.2012.03.002

19. Timofeev V.Yu., Ardyukov D.G., Boyko E.V., Gribanova E.I., Semibalamut V.M., Timofeev A.V., Yaroshevich A.V. 2012. Strain and displacement rates during a large earthquake in the South Baikal region. Russian Geology and Geophysics, 53(8): 798–816. https://doi.org/10.1016/j.rgg.2012.06.007

20. Calais E., Vergnolle M., Deverchere J., San’kov V., Lukhnev A., Amariargal S. 2002. Are post-seismic effects of the M = 8.4 Bolnay earthquake (1905 July 23) still influencing GPS velocities in the Mongolia-Baikal area? Geophysical Journal International, 149(1): 157–168. https://doi.org/10.1046/j.1365-246x.2002.01624.x

21. Calais E., Vergnolle M., San’kov V., Lukhnev A., Miroshnitchenko A., Amarjargal S., Derverche’re J. 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. Journal Geophysical Research: Solid Earth, 108(B10). https://doi.org/10.1029/2002jb002373

22. Jin Sh., Park P.-H., Zhu W. 2007. Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth and Planetary Science Letters, 257(3-4): 486–496. https://doi.org/10.1016/j.epsl.2007.03.011

23. Novikov I.S., Emanov A.A., Leskova E.V., Batalev V.Yu., Rybin A.K., Bataleva E.A. 2008. The system of neotectonic faults in Southeastern Altai: orientations and geometry of motion. Russian Geology and Geophysics, 49(11): 859–867. doi:10.1016/j.rgg.2008.04.005

24. Leskova E.V., Emanov A.A. 2013. Hierarchical properties of the tectonic stress field in the source region of the 2003 Chuya earthquake. Russian Geology and Geophysics, 54(1): 87–95. https://doi.org/10.1016/j.rgg.2012.12.008

25. Rebetsky Yu.L., Kuchai O.A., Marinin A.V. 2013. Stress state and deformations of the Earth's crust in the Altai-Sayan mountain region. Russian Geology and Geophysics, 54(2): 206–222. https://doi.org/10.1016/j.rgg.2013.01.011

26. Timofeev V.Yu., Ardyukov D.G., Timofeev A.V., Boyko E.V., Lunev B.V. 2014. Block displacement fields in the Altai-Sayan region and effective rheologic parameters of the Earth’s crust. Russian Geology and Geophysics, 55(3): 376–389. https://doi.org/10.1016/j.rgg.2014.01.019

27. Rogozhin E.A., Platonova S.G. 2002. [ Focal zones of strong earthquakes in Gorny Altai in the Holocene ]. Moscow: OIFZ RAN, 130 p. (In Russ.).

28. [ Earthquakes and the basics of seismic zoning of Mongolia ] (Eds V.P. Solonenko, N.A. Florensov). 1985. Moscow: Nauka, 224 p. (In Russ.).

29. Khilko S.D., Florensov N.A., Kurushin R.A. et al. 1978. [Seismotectonic lineaments and paleoseismodislocations of the Mongolian Altai]. In: Seismotectonics of the southern regions of the USSR. Moscow: Nauka, p. 75–88. (In Russ.).

30. Solonenko V.P. 1973. Paleoseismology. Izv. AN SSSR, Physics of the Solid Earth, 9: 3–16. (In Russ.).

31. Zhalkovsky N.D., Kuchay O.A., Muchnaya V.I. 1995. Seismicity and some characteristics of the stressed state of the Earth's crust in the Altai-Sayan region. Geologiya i Geofizika, 36(10): 20–30. (In Russ.).

32. Rebetsky Yu.L. 2008. [Current state of earthquake prediction theory. Estimation results of natural stresses and new earthquake source model]. In: Problemy tektonofiziki: K sorokaletiyu sozdaniya M.V. Gzovskim laboratorii tektonofiziki v IFZ RAN. Moscow: IFZ RAN, p. 359–395. (In Russ.).

33. Panteleev I.A., Naimark O.B. 2014. Modern trends in mechanics of tectonic earthquakes. Perm Federal Research Center J., 3: 44–62. (In Russ.). EDN: TDURFP

34. Goldin S.V., Dyadkov P.G., Dashevsky Yu.A. 2001. The South Baikal geodynamic testing ground: strategy of earthquake prediction. Geologiya i Geofizika, 42(10): 1484–1496. (In Russ.).

35. Yunga S.L. 1990. [ Methods and results of studying seismotectonic deformations ]. Moscow: Nauka, 191 p. (In Russ.).

36. Riznichenko Yu.V. 1985. [ Problems of seismology. Selected works ]. Moscow: Nauka, 408 p. (In Russ.).

37. Rebetsky Yu.L. 1997. Reconstruction of tectonic stresses and seismotectonic strains: Methodical fundamentals, current stress field of Southeastern Asia and Oceania. Doklady Earth Sciences, 354(4): 560–563.

38. Rebetsky Yu.L. 2007. Tectonic stresses and strength of rock massifs. M.: Akademkniga, 406 p. (In Russ.).

39. Lukk A.A., Yunga S.L. 1979. Seismotectonic deformation of the Garm region. Izv. AN SSSR, Fizika Zemli, 10: 24–43. (In Russ.).

40. Lukk A.A., Shevchenko V.I., Leonova V.G. 2015. Autonomous geodynamics of the Pamir–Tien Shan junction zone from seismology data. Izv., Physics of the Solid Earth, 51(6): 859–877. https://doi.org/10.1134/s1069351315040060

41. Sycheva N.A., Mansurov A.N. 2017. Comparison of crustal deformation rates estimated from seismic and GPS data on the Bishkek geodynamic polygon. Geodynamics & Tectonophysics, 8(4): 809–825. (In Russ.). https://doi.org/10.5800/gt-2017-8-4-0318; EDN: ZWRGOZ

42. Lukk A.A., Shevchenko V.I. 2019. Seismicity, tectonics, and GPS geodynamics of the Caucasus. Izv., Physics of the Solid Earth, 55(4): 626–648. https://doi.org/10.1134/s1069351319040062

43. Yunga S.L. 2002. Study of surface movements and deformations of the earth's crust on the territory of the Central Tien Shan, the Kazakh platform and Altai; creation of seismological data processing programs, processing: Research report. Obninsk, 41 p. (In Russ.).

44. Yunga S.L. 1997. On the classification of seismic moment tensors based on their isometric mapping onto a sphere. Doklady Akademii Nauk, 352(2): 253–255. (In Russ.).

45. Gushchenko O.I. 1975. Kinematic principle of reconstruction of directions of major stresses (from geological and seismological data). Doklady AN SSSR = Proceedings of the USSR Academy of Sciences, 225(3): 557–560. (In Russ.).

46. Yunga S.L. 1979. On the deformation mechanism of a seismically active crustal volume. Izv. AN SSSR, Fizika Zemli, 10: 14–23. (In Russ.).

47. Khristianovich S.A., Shemyakin E.I. 1969. [On the plane strain of plastic material under complex loading]. Izv. AN SSSR. Mechanics of Solids, 5: 138–149. (In Russ.).

48. Filin A.P. 1975. [ Applied mechanics of solid deformable body ]. Vol. 1. Moscow: Nauka, 832 p. (In Russ.).

49. Sokolovsky V.V. 1969. Theory of plasticity. Moscow: Vysshaya shkola, 608 p. (In Russ.).

50. Sycheva N.A., Sychev V.N. 2022. Some characteristics of the seismicity of Altai and Sayan. In: Materials of the XIV school-conference with international participation “Problems of Geocosmos 2022”, Saint Petersburg, October 3–7, 2022. St. Petersburg: Skifia-print, p. 84–92. (In Russ.).

51. Yemanov A.F., Yemanov A.A., Leskova E.V., Kolesnikov Yu.I., Yankaitis V.V., Filina A.G. 2012. The Ms = 7.0 Uureg Nuur earthquake of 15.05.1970 (Mongolian Altai): the aftershock process and current seismicity in the epicentral area. Russian Geology and Geophysics, 53(10): 1090–1099. https://doi.org/10.1016/j.rgg.2012.08.009

52. Kuchai O.A. 2012. Specific features of fields of stresses associated with aftershock processes in the Altai-Sayan mountainous region. Geodynamics & Tectonophysics, 3(1): 59–68. (In Russ.). https://doi.org/10.5800/gt-2012-3-1-0062

53. Radziminovich N.A. 2021. Focal mechanisms of earthquakes of Southern Baikal Region and Northern Mongolia. Geodynamics & Tectonophysics, 12(4): 902–908. (In Russ.). https://doi.org/10.5800/gt-2021-12-4-0562

54. Jeffreys H., Bullen K.E. 1940. Seismological tables. London: British Association for the Advancement of Science.

55. Goldin S.V. 2004. Dilatancy, repacking, and earthquakes. Izv., Physics of the Solid Earth, 40(10): 817–832.

56. Leskova E.V., Emanov A.A. 2014. Some properties of the hierarchical model reproducing the stress state of the epicentral area of the 2003 Chuya earthquake. Izv., Physics of the Solid Earth, 50(3): 393–402.

57. Sadovskiy M.A., Pisarenko V.F. 1991. [ Seismic process in the block medium ]. Moscow: Nauka, 96 p. (In Russ.).

58. Goldin S.V., Dyad’kov P.G., Dashevskiy Yu.A. 2001. The South Baikal geodinamic testing ground: Strategy of earthquake prediction. Russian Geology and Geophysics, 42(10): 1484–1496. (In Russ.).

59. Rebetskiy Yu.L. 2008. [Current state of earthquake prediction theory. Estimation results of natural stresses and new earthquake source model]. In: Problemy tektonofiziki: K sorokaletiyu sozdaniya M.V. Gzovskim laboratorii tektonofiziki v IFZ RAN. Moscow: IFZ RAN, p. 359–395. (In Russ.).