Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, ¹ 4, pp. 360–379

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.4.360-379, https://www.elibrary.ru/saqhjo


Features of the structural response of the bark and wood of birch (Betula platyphylla, Betulaceae) in the landscapes of sea coasts, magmatic and mud volcanoes of Sakhalin and the Kuril Islands
Anastasiya I. Talskih*, https://orcid.org/0000-0003-0488-2824, anastasiya_talsk@mail.ru
Anna V. Kopanina, https://orcid.org/0000-0001-5354-3584, anna_kopanina@mail.ru
Inna I. Vlasova, https://orcid.org/0000-0002-9365-266X, iivlasova@gmail.com
Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract.Betula platyphylla is one of the main forest-forming species in Northeast Asia. In the Russian Far East, it forms birch and diverse mixed forests. Due to high germinative ability and growth rates, unpretentiousness, resistance to wind, drought, low and high temperatures, Betula platyphylla dominates after clear-cutting, fi and on pyroclastic deposits of volcanoes, and further forms favorable conditions for the restoration of zone coniferous forests. This paper studies the populations of Betula platyphylla under the various conditions of mid-mountain massifs, sea shores, active magmatic and mud volcanoes in the south of Sakhalin and Kuril Islands. Tree age and height were measured and macro- an micro-characteristics of the bark and wood of stems were identified in each habitat from 15 trees using the cleavages, cores and sections. The results of the study have shown that Betula platyphylla under the impact of natural stress is characterized by the formation of a low-growing multi-stemmed tree with significant damage and deformation of the crown, twisted eccentric stems and structural basal anomalies – woodknobs and gnarls. The structural reaction of the bark and wood of the Betula platyphylla, character for many woody plants adapted to extreme habitats, which manifests itself in a decrease in the bark thickness and its growth rate in mature trees was revealed on the Okhotsk coast and under the conditions of the mud volcano on Sakhalin. Under the conditions of gas-hydrothermal springs of magmatic volcanoes, the bark thickness growth rate increases up to 2.7 times compared to the norm, which is probably associated with the young age of trees (10–20 years). The data we have obtained additionally substantiate the adaptive significance of the life strategy of the Betula platyphylla as a fast-growing tree species and show that the bark thickness of woody plants and its growth rate can be the plant functional traits that characterize the natural landscape systems with varying degrees of intensity of ecological factors.


Keywords:
Betula platyphylla, life-form, bark, bark thickness, growth rate, structural anomaly, woodknob, solfatara, volcanic activity, mud volcano

For citation: Talskih A.I., Kopanina A.V., Vlasova I.I. Features of the structural response of the bark and wood of birch (Betula platyphylla, Betulaceae) in the landscapes of sea coasts, magmatic and mud volcanoes of Sakhalin and the Kuril Islands. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 4, pp. 360–379. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2022.6.4.360-379, https://www.elibrary.ru/saqhjo

Äëÿ öèòèðîâàíèÿ: Òàëüñêèõ À.È., Êîïàíèíà À.Â., Âëàñîâà È.È. Îñîáåííîñòè ñòðóêòóðíîãî îòêëèêà êîðû è äðåâåñèíû áåðåçû ïëîñêîëèñòíîé (Betula platyphylla, Betulaceae) â ëàíäøàôòàõ ìîðñêèõ ïîáåðåæèé, ìàãìàòè÷åñêèõ è ãðÿçåâûõ âóëêàíîâ Ñàõàëèíà è Êóðèëüñêèõ îñòðîâîâ. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 4, ñ. 360–379.
https://doi.org/10.30730/gtrz.2022.6.3.218-236, https://www.elibrary.ru/saqhjo


References

1. Vorob’yev D.P. 1968. [ Wild trees and shrubs of the Far East ]. Leningrad: Nauka, 277 p. (In Russ.).

2. Usenko N.V. 1984. [ Trees, shrubs and lianas of the Far East ]. Khabarovsk: Khabarovskoye kn. izd-vo, 270 p. (In Russ.).

3. Solov’yev K.P. 1958. [ Cedar-broadleaved forests and management in them ]. Khabarovsk: Khabarovskoye kn. izd-vo, 368 p. (In Russ.).

4. Ageyenko A.C., Klintsov A.P., Popov H.A., Rozenberg V.A., Vasil’yev N.G., Man’ko L.I. 1969. [Forests of the Sakhalin region]. In: [ Forests of the USSR ]. Moscow: Nauka, vol. 4, p. 668–700. (In Russ.).

5. Alekseenko A.Yu., Brusova E.V., Vyvodtsev N.V., Gromyko S.A., Gukov G.V., Gul L.P., Efremov D.F., Zamaleev V.K., Kovalev A.P. 2009. [ The current state of the forests of the Russian Far East and the prospects for their use ]. Khabarovsk: Dal’NIILKH, 470 p. (In Russ.).

6. Sheingauz A.S. 2005. [ Forest sector of the Russian Far East: An analytical survey ]. Khabarovsk: DVO RAN, 160 p. (In Russ.).

7. Neshatayeva V.Yu. 2009. [ Vegetation of the Kamchatka Peninsula ]. Moscow: KMK, 537 p. (In Russ.).

8. Korablev A.P., Neshataeva V.Yu., Golovneva L.B. 2014. [Volcanogenic dynamics of vegetation]. In: [ Vegetation cover of the volcanic plateaus of Central Kamchatka (Klyuchevskaya group of volcanoes) ]. Moscow: KMK, 231– 316. (In Russ.).

9. Neshataeva V.Yu. 2007. [Vegetation dynamics of Kamchatka under the influence of modern volcanism (on the example of the Klyuchevskaya group of volcanoes)]. In: [ Actual problems of geobotany: Lectures, Petrozavodsk, September 24– 29, 2007 ]. Petrozavodsk: Karelian Scientific Center of RAS, p. 408–418. (In Russ.).

10. Grishin S.Y., Perepelkin P.A., Burdukovskii M.L. 2019. Beginning of vegetation succession on lava flows from the 2012–2013 eruption of Tolbachik volcano, Kamchatka. Russian J. of Ecology, 50(3): 300–303. https://doi.org/10.1134/s1067413619030032

11. Grishin S.Yu., Perepelkina P.A., Burdukovsky M.L., Lazarev A.G. 2021. Ashfall of the Shiveluch volcano (Kamchatka) on August 29, 2019 and its impact on vegetation. Izvestiya Russkogo geograficheskogo obshchestva = Proceedings of the Russian geographical society, 153(5): 34–37. (In Russ., abstr. in Engl.). https://doi.org/10.31857/S0869607121050049

12. Korablev A.P., Neshataeva V.Yu. 2016. Primary plant successions of forest belt vegetation on the Tolbachinsky Dol volcanic plateau (Kamchatka). Izv. RAN. Seriya biologicheskaya = Biology Bulletin, 4: 366–376. (In Russ., abstr. in Engl.). https://doi.org/10.7868/S0002332916040056

13. Korznikov K.A. 2015. Plant communities of the Maguntan mud volcano (Sakhalin Island). Byulleten’ Moskovskogo obshchestva ispytateley prirody. Otdel biologicheskiy = Bulletin of Moscow Society of Naturalists. Biological series, 120(1): 61–68. (In Russ., abstr. in Engl.).

14. Korablev A., Smirnov V., Neshataeva V., Kuzmin I., Nekrasov T. 2020. Plant dispersal strategies in primary succession on the Tolbachinsky Dol volcanic plateau (Russia). J. of Vegetation Science, 31(6): 954–966. https://doi.org/10.1111/jvs.12901

15. Man’ko Yu.I., Sidel’nikov A.N. 1989. [ The influence of volcanism on vegetation ]. Vladivostok: DVO AN SSSR, 163 p. (In Russ.).

16. Man’ko Yu.I. 1980. [Volcanism and vegetation dynamics]. Botanicheskiy zhurnal = Botanical J., 65(4): 457–469. (In Russ.).

17. Korznikov K.A. 2015. Rastitel’nyy pokrov gryazevykh vulkanov o. Sakhalin [Vegetation cover of mud volcanoes of Sakhalin Island ]: thesis for a Cand. degree (Biol.). Moscow, Lomonosov Moscow State University. (In Russ.).

18. Kopanina A.V. 2019. Vegetation of the Yuzhno-Sakhalinsky mud volcano as an indicator of activity. IOP Conference Series: Earth and Environmental Science, 324(1): 012032. https://doi.org/10.1088/1755-1315/324/1/012032

19. Vorob’yev D.P. 1963. [ Vegetation of the Kuril Islands ]. Moscow; Leningrad: Izdatel’stvo AN SSSR, 92 p. (In Russ.).

20. Terletskaya A.T. 2013. [ Vegetation cover of the Far East ]. Khabarovsk: Izdatel’stvo Tikhookeanskogo gosudarstvennogo universiteta, 116 p. (In Russ.).

21. Berezina N.A. 2009. [ Plant ecology ]. Moscow: Academy Publ. Center, 400 p. (In Russ.).

22. Schweingruber F.H. 2007. Wood structure and environment. Berlin: Springer-Verlag, 279 p. https://doi.org/10.1007/978-3-540-48548-3

23. Williams V.L. 2007. Relationship between bark thickness and diameter at breast height for six tree species used medicinally in South Africa. South African Association of Botanists, 73: 449–465.

24. Sonmez T. 2007. Effect of aspect, tree age and tree diameter on bark thickness of Picea orientalis. Scandinavian J. of Forest Research, 22: 193–197.

25. Carlon Allende T., Macias J.L., Mendoza M.E., Villanueva Diazd J. 2020. Evidence of volcanic activity in the growth rings of trees in the Tacana Volcano, Mexico-Guatemala. Canadian J. of Forest Research, 50(1): 65–72.

26. Borovikova M.G. 2013. The year layer width variability of the fluffy birch stem wood and bark. Vestnik KrasGAU = Bulletin of KSAU, 2: 76–80. (In Russ., abstr. in Engl.).

27. Hempson G.P., Midgley J.J., Lawes M.J., Vickers K.J., Kruger L.M. 2014. Comparing bark thickness: testing methods with bark – stem data from two South African fire-prone biomes. J. of Vegetation Science, 25: 1247–1256. https://doi.org/10.1111/jvs.12171

28. Corvalan P., Naulin P., Contreras A. 2019. Variacion del espesor de corteza en el perfil fustal de Nothofagus obliqua en la precordillera de Maule, Chile. Interciencia, 44: 644–648.

29. Pausas J.G. 2015. Bark thickness and fire regime. Functional Ecology, 29: 315–327. https://doi.org/10.1111/1365-2435.12372

30. Kidd K.R., Varner J.M. 2019. Differelative bark thickness and aboveground growth discriminates fi resistance among hardwood sprouts in the southern Cascades, California. Trees, 33: 267–277. https://doi.org/10.1007/s00468-018-1775-z

31. Wang G.G., Wangen S.R. 2011. Does frequent burning affect longleaf pine ( Pinus palustris ) bark thickness. Canadian J. of Forest Research, 41(7): 1562–1565. https://doi.org/10.1139/X11-074

32. Do Vale A.T., Elias P.S. 2014. Bark thermal protection level of four tree species and the relationship between bark architecture and heat transfer. Ciencia Florestal, Santa Maria, 24(4): 979–987. https://doi.org/10.1590/1980-509820142404017

33. Midgley J.J., Lawes M.J. 2016. Relative bark thickness; towards standardised measurement and analysis. Plant Ecology, 21: 677–681. https://doi.org/10.1007/s11258-016-0587-8

34. Midgley J.J. 2019. Evidence from Cape Proteaceae that high relative bark thickness is correlated with high bark thickness growth rates. South African J. of Botany, 124: 36–38. https://doi.org/10.1016/j.sajb.2019.04.021

35. Evert R.F. 2016. Esau’s plant anatomy. Meristems, cells and tissues of the plants body: their structure, function, and development. Moscow: BINOM, Knowledge Laboratory, 600 p. (In Russ.).

36. Pasztory Z., Gorbacheva G.A., Sanaev V.G., Mohacsine I.R., Borcsok Z. 2020. Status and prospects of tree bark use. Lesnoy vestnik = Forestry Bulletin, 24(5): 74–88. (In Russ., abstr. in Engl.). https://doi.org/10.18698/2542-1468-2020-5-74-88

37. Kopanina A.V., Lebedeva E.V., Vlasova I.I. 2018. Features of vegetation restoration after the eruption of 1907 Ksudach caldera in the south of the Kamchatka Peninsula. Izv. RAN. Seriya geograficheskaya, 6: 57–69. (In Russ., abstr. in Engl.). https://doi.org/10.1134/S2587556618060092

38. Talskikh A.I., Kopanina A.V., Vlasova I.I. 2021. Structural features of Betula ermanii (Betulacea) in coastal and active volcanic landscapes of the Russian Far East. Rastitel’nyye resursy, 57(2): 124–144. (In Russ., abstr. in Engl.). https://doi.org/10.31857/S0033994621020096

39. Kopanina A.V., Lebedeva E.V., Vlasova I.I., Talskikh A.I. 2020. Structural traits of woody plants and geomorphological conditions to the vegetation recovery at Ksudach caldera (Southern Kamchatka) since the explosive eruption in 1907. J. of Mountain Science, 17(7): 1613–1635. https://doi.org/10.1007/s11629-019-5583-8

40. Kopanina A.V., Talskikh A.I., Vlasova I.I., Kotina E.L. 2022. Age-related pattern in bark formation of Betula ermanii growing in volcanic environments from southern Sakhalin and Kuril Islands (Northeast Asia). Trees, 36: 915–939. https://doi.org/10.1007/s00468-021-02257-x

41. Nedoluzhko V.A., Skvortsov A.K. 1996. [Fam. Betulaceae]. In: [ Vascular plants of the Soviet Far East ]. St.-Petersburg: Nauka, 8: 13–24. (In Russ.).

42. Koropachinskiy I.Yu., Milyutin L.I. 2006. [ Natural hybridization of woody plants ]. Novosibirsk: GEO, 223 p. (In Russ.).

43. Koropachinskiy I.Yu. 2016. [ Arboriflora of Siberia ]. Novosibirsk: GEO, 578 p. (In Russ.).

44. Skvortsov A.K. 2002. A new system of the genus Betula. Byulleten’ Moskovskogo obshchestva ispytateley prirody. Otdel biologicheskiy = Bull. of Moscow Society of Naturalists. Biological series, 107(5): 73–76. (In Russ., abstr. in Engl.).

45. Wu Z., Raven P. H., Hong D. (ed). 1999. Betula Linnaeus, Sp. Pl. 2: 982. 1753. In. Flora of China 4: 304–313.

46. Nedoluzhko V.A. 1995. [ Synopsis of the dendroflora of the Russian Far East ]. Vladivostok: Dal’nauka, 208 p. (In Russ.).

47. Seregin A.P. (ed.) 2022. Moscow Digital Herbarium: Electronic resource. Moscow: Moscow State University. URL:https://plant.depo.msu.ru/ (accessed 05.08.2022)

48. Barkalov V.Yu. 2009. Flora of the Kuril Islands. Vladivostok: Dal’nauka, 468 p. (In Russ., abstr. in Engl.).

49. Shemyakina A.V., Degtyareva A.Yu., Vyvodtsev N.V., Tagiltsev Yu.G., Tsyupko V.A., Kolesnikova R.D. 2015. Far Eastern representatives of the genus Betula L.: distribution, ecology, test of new products. Vestnik Tikhookeanskogo gosudarstvennogo universiteta, 36(1): 35–44. (In Russ., abstr. in Engl.).

50. Danilin I.M. 2009. The structure of post-fire birch forests at their southern range. Lesovedeniye, 3: 20–31. (In Russ., abstr. in Engl.).

51. Serebryakov I.G. 1964. [Life forms of higher plants and their study]. In: [ Field Geobotany ]. Moscow; Leningrad: Nauka, vol. 3: 146–205. (In Russ.).

52. Barykina R., Veselova T., Devyatov A., Dzhalilova Kh., Iljina G., Chubatova N. 2004. [ Manual on botanical microtechnique: Basic principles and methods ]. Moscow: Publ. House MSU, 312 p. (In Russ.).

53. Angyalossy V., Pace M.R., Evert R.F., Marcati C.R., Oskolski A.A., Terrazas T., Kotina E., Lens F., Mazzoni-Viveiros S.C., Angeles G., Machado S.R., Crivellaro A., Rao K.S., Junikka L., Nikolaeva N., Baas P. 2016. IAWA List of Microscopic Bark Features. IAWA Journal, 37(4): 517–615. http://dx.doi.org/10.1163/22941932-20160151

54. Zaitsev G.N. 1973. [ Technique of biometric calculations. Mathematical statistics in experimental botany ]. Mosñow: Nauka, 256 p. (In Russ.)

55. Min’ko A.A. 2004. [ Statistical analysis in MS Excel ]. Moscow: Dialectics, 448 p. (In Russ.).

56. Ershov V.V., Kopanina A.V. 2017. [The chemical composition of water extracts from the soils of mud volcanic landscapes]. In: [ Geography: development of science and education. Pt I. Collective monograph on materials of the annual Intern. scientific and practical conf. LXX Gertsenovsky readings, to the year of ecology in Russia, to the 220th anniversary of Gertsenovsky university, to the 85th anniversary of faculty of geography, to the 145th anniversary since the birth of professor Vladimir Petrovich Budanov, St. Petersburg, RSPU of A.I. Herzen, on April 20–23, 2017 ]. Saint Petersburg, p. 142–147. (In Russ.).

57. Yakovets O.G. 2010. [ Phytophysiology of stress: a course of lectures ]. Minsk: BGU, 103 p. (In Russ.).

58. Korovin V.V. 2002. [ Structural anomalies in the stem of woody plants ]. Moscow: Moscow State Forest University, 259 p. (In Russ.)

59. Novitskaya L.L. 2008. Karelian Birch: mechanisms of growth and development of structural abnormalities. Petrozavodsk: Verso, 144 p. (In Russ.).

60. Nikolaeva N.N., Vorobiev V.V. 2016. Role of the bark tissues complex in formation of the trunk surface relief in Betula pendula var. carelica. Vestnik Moskovskogo gosudarstvennogo universiteta lesa – Lesnoy vestnik = Moscow State Forest University bulletin – Forestry bulletin, 20(4): 25–28. (In Russ., abstr. in Engl.).

61. Kabanov N.E. 1972. [ Botanical-geographic and silvicultural aspects of Erman’s birch forests ]. Mosñow: Nauka, 136 p. (In Russ.).

62. Bruelheide H., Dengler J., Purschke O. et al. 2018. Global trait – environment relationships of plant communities. Nature Ecology & Evolution, 2: 1906–1917. https://doi.org/10.1038/s41559-018-0699

63. Kopanina A.V., Vlasova I.I. 2019. Structural changes of bark of the woody liana Òoxicodendron orientale Greene (Anacardiaceae) in the extreme environments of gas-hydrothermal volcanic activity. Botanica Pacifica, 8(2): 3–17. https://doi.org/10.17581/bp.2019.08212

64. Mazurenko M.T., Khokhryakov A.P. 1977. [ Structure and morphogenesis of shrubs ]. Moscow: Nauka, 160 p. (In Russ.).

65. Nikitenko O.A., Ershov V.V. 2020. Hydrogeochemical characteristic of mud volcanism manifestations on Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(3): 321–350. https://doi.org/10.30730/gtrz.2020.4.3.321-335.336-350 (In Russ. & Engl.).

66. Kopanina A.V., Shvidskaya K.A. 2021. Possibility of using satellite-based monitoring for large-scale mapping and research of dynamics of mud volcanic landscapes. IOP Conf. Series: Earth and Environmental Science, 946: 012040. http://doi.org/10.1088/1755-1315/946/1/012040