Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, ¹ 3, pp. 339–359

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.4.339-359, https://www.elibrary.ru/urpxel


Bark of assimilation shoots of the Beauverd spirea shrub (Spiraea beauverdiana S.K. Schneid.): structural changes under the conditions of volcanic stress in the South Kuril Islands and the Kamchatka Peninsula
Ekaterina O. Vatserionova*, https://orcid.org/0000-0002-2280-083X, katya.vatserionova.85@mail.ru
Anna V. Kopanina, https://orcid.org/0000-0001-5354-3584, anna_kopanina@mail.ru
Inna I. Vlasova, https://orcid.org/0000-0002-9365-266X, iivlasova@gmail.com
Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. The article analyzes the bark of annual assimilation shoots of the Beauverd spirea shrub (Spiraea beauverdiana S.K. Schneid., Rosaceae Juss.) growing under the stressful conditions of volcanic and post-volcanic activity in the Kuril Islands (Kunashir, Iturup) and the Kamchatka Peninsula. The combination of negative environmental factors under the conditions of fumarolic, gas-hydrothermal activity and on pyroclastic deposits in volcanogenic landscapes causes disturbance in the activity of the lateral meristems of the stem – phellogen and vascular cambium. Under the conditions of volcanic stress, the functional activity of these meristems can be both constant and intermittent during the growing season, or may be completely absent (temporary dormancy of meristems). As a result of combinations of different functional activity of meristems in assimilation shoots and in their individual sections, different anatomical structures of the cortex can form in S. beauverdiana. Based on the totality of structural and functional features, we identified three types of anatomical organization of the one-year-old cortex in S. beauverdiana from volcanic habitats, which are visualized by light microscopy in the form of contrasting anatomical patterns. We believe the structural changes in the one-year-old crust formed as a result of the unstable activity of the phellogen and vascular cambium under the influence of volcanic stress, to be adaptive.


Keywords:
phloem, periderm, anomalies, bark, assimilation shoots, woody plants, gas hydrotherms, solfataras, slag fields, volcanic activity

For citation: Vatserionova E.O., Kopanina A.V., Vlasova I.I. Bark of assimilation shoots of the Beauverd spirea shrub (Spiraea beauverdiana S.K. Schneid.): structural changes under the conditions of volcanic stress in the South Kuril Islands and the Kamchatka Peninsula. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 4, pp. 339–359. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2022.6.4.339-359, https://www.elibrary.ru/urpxel

Äëÿ öèòèðîâàíèÿ: Âàöåðèîíîâà Å.Î., Êîïàíèíà À.Â., Âëàñîâà È.È. Êîðà àññèìèëÿöèîííûõ ïîáåãîâ êóñòàðíèêà ñïèðåè Áîâåðà (Spiraea beauverdiana S.K. Schneid.): ñòðóêòóðíûå èçìåíåíèÿ â óñëîâèÿõ âóëêàíîãåííîãî ñòðåññà íà þæíûõ Êóðèëüñêèõ îñòðîâàõ è ïîëóîñòðîâå Êàì÷àòêà. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 4, ñ. 339–359.
https://doi.org/10.30730/gtrz.2022.6.4.339-359, https://www.elibrary.ru/urpxel


References

1. Manko Yu.I. 1980. [Volcanism and vegetation dynamics]. Botanical J., 65(4): 457–469. (In Russ.).

2. Laverov N.P. 2005. [ Newest and modern volcanism in Russia ]. Moscow: Nauka, 604 p. (In Russ.).

3. Manko Yu.I., Sidelnikov A.N. 1989. [ Effect of volcanism on vegetation ]. Vladivostok: DVO AN SSSR, 163 p. (In Russ.).

4. Grishin S.Yu. 1992. [Successions of subalpine vegetation on lava flows of the Tolbachinsky Dol]. Botanical J., 77(1): 92–100. (In Russ.).

5. Grishin S.Yu. 2014. Outpouring of lava flows on the Kuril Islands in XX and the beginning of XXI centuries: scope and depth of ecosystem changes. Izvestiya Russkogo geograficheskogo obshchestva, 6: 1–13. (In Russ., abstr. in Engl.).

6. Neshataeva V.Yu. 2009. [ Vegetation of Kamchatka Peninsula ]. Moscow: KMK, 537 p. (In Russ.).

7. Bogolitsyn K.G., Surso M.V., Gusakova M.A., Zubov I.N. 2016. The influence of stresses on the component composition and structure of juniper wood. Lesnoy zhurnal = Russian Forestry J., 6: 33–41. (In Russ., abstr. in Engl.). https://doi.org/10.17238/issn0536-1036.2016.6.33

8. Islam M., Rahman M., Brauning A. 2019. Impact of extreme drought on tree-ring width and vessel atomical features of Chukrasia tabularis. Dendrochronologia, 53: 63–72. https://doi.org/10.1016/j.dendro.2018.11.007

9. Kuzmichev A.I., Zolotukhin A.I. 2012. The damage of woody plants by extremely high temperatures and dry weather in summer 2010 in the middle Khoper river region. Vestnik Saratovskogo gosagrouniversiteta im. N.I. Vavilova, 1: 32–36. (In Russ., abstr. in Engl.).

10. Zolotukhin A.M., Zanina M.A. 2015. The adaptations of woody plants after a thermal stress in the khopyor river region. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Himiya. Biologiya. Ekologiya, 15(1): 93–98. (In Russ., abstr. in Engl.).

11. Farahat E., Gartner H. 2019. Anatomy and dendrochronological potential of Moringa peregrina from the hyper-arid desert in Egypt. Dendrochronologia, 56: 125606. https://doi.org/10.1016/j.dendro.2019.125606

12. Fakhrutdinova V.V., Benkova V.E., Shashkin A.V. 2017. Variability of the tree-rings structure of Gmelin’s Larch at northern tree line (Peninsula of Taymyr). Sibirskij lesnoj zhurnal = Siberian J. of Forest Science, 2: 62–69. (In Russ., abstr. in Engl.). https://doi.org/10.15372/sjfs20170207

13. Fonti M.V., Fakhrutdinova V.V., Kalinina E.V., Tychkov I.I. et al. 2019. Long-term variability of anatomic features of annual tree rings of larch, pine and spruce in the permafrost zone in Central Siberia. Contemporary Problems of Ecology, 12(7): 692–702. https://doi.org/10.1134/S1995425519070035

14. Cruz-Munoz A.R., Rodr?guez-Fernandez L., Calva-Vazquez G., Ruvalcaba-Sil J.L. 2008. Effects due to Popocatepetl volcano eruptions on the elemental concentrations in tree growth rings. X-Ray Spectrometry, 37: 163–168. https://doi.org/10.1002/XRS.1057

15. Alfaro Sanchez R., Camarero J.J., Querejeta J.I., Sagra J., Moya D., Rodr?iguez-Trejo D. 2020. Volcanic activity signals in tree-rings at the treeline of the Popocatepetl, Mexico. Dendrochronologia, 59: 125663. https://doi.org/10.1016/j.dendro.2020.125663

16. Battipaglia G., Cherubini P., Saurer M., Siegwolf T.W., Strumia S., Cotrufo F. 2007. Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biology, 13: 1122– 1137. http://doi.org/10.1111/j.1365-2486.2007.01350.x

17. Carlon Allende T., Macias J.L., Mendoza M.E., Villanueva Diazd J. 2020. Evidence of volcanic activity in the growth rings of trees at the Tacana Volcano, Mexico-Guatemala border. Canadian J. of Forest Research, 50(1): 65–72. https://doi.org/10.1139/cjfr-2019-0214

18. Schweingruber F.H. 2007. Wood structure and environment. Berlin: Springer-Verlag, 279 p. https://doi.org/10.1007/978-3-540-48548-3

19. Borovikova M. G. 2013. The year layer width variability of the fluffy birch stem wood and bark. Vestnik KrasGAU, 2(77): 76–80. (In Russ., abstr. in Engl.).

20. Barykina R.P., Kudryashev L.V. 1973. [Anatomical study of the hypoarctic shrubs Betula exilis Sukacz. and Betula nana L.]. Botanical J., 58(3): 421–428. (In Russ.).

21. Corvalan P., Naulin P., Contreras A. 2019. Variacion del espesor de corteza en el perfil fustal de Nothofagus obliqua en la precordillera de Maule, Chile. Interciencia, 44: 644–648.

22. Stasova V.V., Zubareva O.N., Ivanova G.A. 2015. Anatomical features of the scots pine stem phloem after forest fire. Sibirskij Lesnoj Zhurnal, 1: 74–86. (In Russ., abstr. in Engl.).

23. Pausas J.G. 2015. Bark thickness and fire regime. Functional Ecology, 29: 315–327. http://doi.org/10.1111/1365-2435.12372

24. Pausas J.G. 2017. Bark thickness and fire regime: another twist. New Phytologist, 213: 13–15. https://doi.org/10.1111/nph.14277

25. Shearman T.M., Wang G.G., Ma P.T., Guan S. 2018. Patterns of bark growth for juvenile trees of six common hardwood species in the eastern United States and the implications to fire-tolerance. Trees, 32: 519–524. https://doi.org/10.1007/s00468-017-1649-9

26. Kidd K.R., Varner J.M. 2019. Differential relative bark thickness and aboveground growth discriminates fire resistance among hardwood sprouts in the southern Cascades, California. Trees, 33: 267–277. https://doi.org/10.1007/s00468-018-1775-z

27. Talskikh A.I., Kopanina A.V., Vlasova I.I. 2019. [Structural features of the bark of young stems of Betula ermanii Cham. in the conditions of the Yuzhno-Sakhalinsk mud volcano (Sakhalin Island)]. In: Geodynamic processes and natural disasters: Abstracts of the III All-Russian scientific conf. with intern. participation, Yuzhno-Sakhalinsk, May 27–31. Yuzhno-Sakhalinsk: Institute of Marine Geology and Geophysics of the FEB RAS, p. 181. (In Russ.)

28. Kopanina A.V., Talskikh A.I., Vlasova I.I., Kotina E.L. 2022. Age-related pattern in bark formation of Betula ermanii growing in volcanic environments from southern Sakhalin and Kuril Islands (Northeast Asia). Trees, 36: 915–939. https://doi.org/10.1007/s00468-021-02257-x

29. Òalskikh A.I., Kopanina A.V., Vlasova I.I. 2022. Structural features in the bark of the annual stem Betula ermanii Cham., exposed to the Baransky volcano hydrothermal gases and fluids. Regional’nye problemy, 25(1): 16–30. (In Russ., abstr. in Engl.). http://doi.org/10.31433/2618-9593-2022-25-1-16-30

30. Vazcerionova E.O., Kopanina A.V. 2016. The internal structure of the young stems Spiraea beauverdiana formed under solfataric fields Golovnin volcano caldera, Kunashir Island. Byull. Botanicheskogo sada-instituta DVO RAN, 15: 8–10. (In Russ., abstr. in Engl.).

31. Kopanina A.V., Vlasova I.I., Vatserionova E.O. 2017. Structural adaptation of woody plants to volcanic landscapes of the Kuril Islands. Vestnik of the FEB RAS, 1: 88–96. (In Russ., abstr. in Engl.).

32. Vatserionova E.O., Kopanina A.V., Vlasova I.I. 2021. The structure of the bark of the annual stem of Spiraea beauverdiana (Rosaceae) in the conditions of the solfatar fields of the Golovnin volcano’s caldera (Kunashir, south Kuril Islands). Byull. Botanicheskogo sada-instituta DVO RAN, 25: 1–15. (In Russ., abstr. in Engl.). http://doi.org/10.17581/bbgi2501

33. Poberezhnaya T.M., Kopanina A.V. 2011. The biogeochemistry and anatomy of plants in areas of recent volcanism. Contemporary Problems of Ecology, 4(2): 212–217. http://doi.org/10.1134/S1995425511020135

34. Kopanina A.V., Vlasova I.I. 2019. Structural changes of bark of the woody liana Òoxicodendron orientale Greene (Anacardiaceae) in the extreme environments of gashydrothermal volcanic activity. Botanica Pacifica, 8(2): 3–17. https://doi. org/10.17581/bp.2019.08212

35. Kopanina A.V., Eremin V.M. 2012. Bark anatomy of some Ericaceae species from Sakhalin and Kuril Islands. Botanicheskij zhurnal, 97(8): 1061a–1079. (In Russ., abstr. in Engl.)

36. Kopanina A.V., Lebedeva E.V., Vlasova I.I. 2018. Features of vegetation restoration after the eruption of 1907 Ksudach caldera in the south of the Kamchatka peninsula. Izvestiya Rossijskoj akademii nauk. Seriya geograficheskaya, 6: 57–69. (In Russ., abstr. in Engl.). https://doi.org/10.1134/S2587556618060092.

37. Kopanina A.V., Lebedeva E.V., Vlasova I.I., Talskikh A.V. 2020. Structural traits of woody plants and geomorphological conditions to the vegetation recovery at Ksudach caldera (Southern Kamchatka) since the explosive eruption in 1907. J. of Mountain Science, 17: 1613–1635. http://doi. org/10.1007/s11629-019-5583-8

38. Bezdelev A.B., Bezdeleva T.A. 2006. [ Life forms of seed plants of the Russian Far East]. Vladivostok: Dal’nauka, 295 p. (In Russ.).

39. Korablev A.P., Neshataeva V.Y. 2016. Primary plant successions of forest belt vegetation on the Tolbachinskii Dol volcanic plateau (Kamchatka). Biology Bull., 43(4): 307–317. http://doi.org/10.1134/S1062359016040051

40. Tolmachev A.I. 1956. [ Trees, shrubs and woody lianas of Sakhalin Island]. Moscow: Academy of Sciences of the USSR, 159 p. (In Russ.).

41. Smirnov A.A. 2002. [ Distribution of vascular plants on Sakhalin Island]. Yuzhno-Sakhalinsk: IMGiG DVO RAN, 245 p. (In Russ.).

42. Yakubov V.V., Nedoluzhko V.A., Shantser I.A., Tikhomirov V.N., Rumyantsev S.D. 1996. [Rosaceae family – Rosaceae]. In: Vascular plants of the Soviet Far East. St. Petersburg: Nauka, 8: 125–246. (In Russ.).

43. Barkalov V.Yu. 2009. Flora of the Kuril Islands. Vladivostok: Dal’nauka, 468. (In Russ., abstr. in Engl.).

44. Yakubov V.V. 2007. Plants of Kamchatka (the Field Atlas). Moscow: Put’, Istina i Zhizn’, 260 p. (In Russ.).

45. Zharkov R.F., Poberezhnaya T.M. 2008. Effect of solphataric hydrothermal activity of volcanoes on landscapes (taking Mendeleev volcano, Kunashir Island, Kuril Islands, as an example). Vestnik of the FEB RAS, 1: 53–58. (In Russ., abstr. in Engl.).

46. Zharkov R.V. 2014. Thermal springs of the South Kuril Islands. Vladivostok: Dal’nauka, 378. (In Russ., abstr. in Engl.).

47. Chaplygin I.V. 2009. [ Ore mineralization of high-temperature fumaroles of Kudryavy volcano (Iturup Island, Kuril Islands)]: [extended abstr… Cand. Sci. (Geol.-Miner.)]. Moscow, 24 p. (In Russ.).

48. Selyangin O.B. 2009. To the Mutnovsky and Gorely volcanoes: volcanological and traveller’s guide. Petropavlovsk Kamchatsky: Novaja kniga, 108 p. (In Russ.).

49. Panova L.A. 2012. [Minerals of geothermal deposits of Dachnye springs of Mutnovsky volcano, Kamchatka]. Metallogeny of Ancient and Modern Oceans, 1: 78–81. (In Russ.).

50. Melekestsev I.V., Sulerzhitsky L.D. 1987. [Ksudach volcano (Kamchatka) over the last 10 thousand years]. Volcanology and Seismology, 4: 28–39. (In Russ.).

51. Vlasova I.I., Kopanina A.V. 2021. Peculiarities of selecting woody plants for anatomy analysis in various environments. IOP Conf. Series: Earth and Environmental Science, 946: 012048. https://doi.org/10.1088/1755-1315/946/1/012048

52. Bogolyubov A.S., Pankov A.B. 1996. [ The simplest method of geobotanical description of the forest: a guidance manual]. Moscow: Ecosystem, 17 p. (In Russ.).

53. Andreeva E.N., Bakkal I.Yu., Gorshkov V.V., et al. 2002. [ Methods for studying forest communities]. St. Petersburg: Komarov Botanical Institute of RAS, 240 p. (In Russ.).

54. Barykina R.P., Veselova T.D., Devyatov A.G., et al. 2004. [ Handbook of botanical microengineering: fundamentals and methods]. Moscow: Publ. House of Moscow State University, 312 p. (In Russ.).

55. Angyalossy V., Pace M.R., Evert R.F., Marcati C.R., Oskolski A.A., Terrazas T., Kotina E., Lens F., Mazzoni-Viveiros S.C., Angeles G., Machado S.R., Crivellaro A., Rao K.S., Junikka L., Nikolaeva N., Baas P. 2016. IAWA list of microscopic bark features. IAWA J., 37(4): 517–615. https://doi.org/10.1163/22941932-20160151

56. Lotova L.I., Timonin A.K. 2005. [ Anatomy of the Rosaceae bark: diversity, evolution, taxonomic significance]. Moscow: KMK, 264 p. (In Russ.).

57. Eremin V.M., Kopanina A.V. 2012. [ Atlas of the anatomy of the bark of trees, shrubs and lianas of Sakhalin and the Kuril Islands]. Brest: Polygraphics, 896 p. (In Russ.).

58. Kopanina A.V. 2018. Structural adaptations of Spiraea beauverdiana (Rosaceae Juss.) in extreme conditions. In: Materialy VI Mezhdunarodnogo simpoziuma imeni B.N. Ugoleva, posvyashchennogo 50-letiyu Regional’nogo koordinacionnogo soveta po sovremennym problemam drevesinovedeniya, Krasnoyarsk, 10–16 September. Novosibirsk: SB RAS, p. 108–111. (In Russ., abstr. in Engl.).

59. Korovin V.V., Novitskaya L.L., Kurnosov G.A. 2003. [ Structural stem anomalies of woody plants]. Moscow: MGUL, 259 p. (In Russ.).

60. Novitskaya L.L. 2008. Karelian birch: mechanisms of growth and development of structural abnormalities. Petrozavodsk, Verso, 144 p. (In Russ., abstr. in Engl.).

61. Talalueva L.V. 1983. [Features of the anatomical structure of the stem bark of some species of the genus Betula (Betulaceae)]. Botanical J., 70(4): 490–495. (In Russ.).

62. Talskikh A.I., Kopanina A.V., Vlasova I.I. 2019. Structural features of the bark in young stems of Betula ermanii Cham. in the conditions of Yuzhno-Sakhalinsky mud volcano (Sakhalin Island). IOP Conference Series Earth and Environmental Science, 324: 012033. https://doi.org/10.1088/1755-1315/324/1/012033

63. Kopanina A.V., Talskikh A.I., Vlasova I.I. 2018. Features of the structure of the bark and wood of Betula ermanii (Betulaceae S.F. Gray) in island ecosystems. In: Materialy VI Mezhdunarodnogo simp. imeni B.N. Ugoleva, posvyashch. 50-letiyu Regional’nogo koordinacionnogo soveta po sovremennym problemam drevesinovedeniya, Krasnoyarsk, 10–16 September. Novosibirsk: SB RAS, p. 111–115. (In Russ., abstr. in Engl.).

64. Evert R.F. 2006. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd ed. Canada, 601 p. https://doi.org/10.1002/0470047380

65. Kopanina A.V. 2019. Structure and formation of bark tissues of Betula ermanii (Betulaceae) in ontogenesis. In: Plant anatomy: traditions and perspectives: Materials of the Intern. Symp. ded. to the 90th anniversary of Prof. Ludmila Ivanovna Lotova, Sept. 16–22. Pt 1. Moscow: MAKS Press, p. 131–133. https://msu-botany.ru/gallery/10-29003-m664-conf-lotova2019_part1.pdf