Abstract PDF ENG | Ðåçþìå PDF RUS | Full text PDF RUS&ENG |
Abstract. The paper attempts to answer the question about the role of contribution of the hydroisostasy to the stress-strain state of the Earth’s crust on the Island of Sakhalin. The hydroisostasy contribution was estimated by simulation by means of finite element method. The mesh grid for the calculation was constructed using the real values of the depth of the Moho discontinuity surface and the topography of Sakhalin Island with adjacent shelf areas. The calculation took into account the Central Sakhalin fault zone. Lateral displacements as a result of strain and lateral displacements combined with vertical ones were simulated separately. Comparison of the results of the stress-strain state simulation, taking lateral displacements and their combination with vertical ones into account, clearly demonstrates the significance of the hydroisostasy contribution to the stress-strain state of the Earth’s crust in the Sakhalin region.
Keywords:
hydroisostasy, stress, strains, vertical movements, fault, Elmer, finite element method
For citation: Bulgakov R.F. Modeling of the stress-strain condition of the Earth’s crust of Sakhalin Island: impact of hydroisostasy. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 4, pp. 303–327. (In Russ. & Engl.).
https://doi.org/10.30730/gtrz.2022.6.4.303-315.316-327, https://www.elibrary.ru/pylmpf
Äëÿ öèòèðîâàíèÿ: Áóëãàêîâ Ð.Ô. Ìîäåëèðîâàíèå íàïðÿæåííî- äåôîðìèðîâàííîãî ñîñòîÿíèÿ çåìíîé êîðû î. Ñàõàëèí: âëèÿíèå ãèäðîèçîñòàçèè. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 4, ñ. 303–327.
https://doi.org/10.30730/gtrz.2022.6.4.303-315.316-327, https://www.elibrary.ru/pylmpf
References
1. Shepard F.P. 1969. Marine geology. Leningrad: Nedra, 462 p.
2. Fairbridge R. 1961. Eustatic changes in sea level. Physics and Chemistry of the Earth, 4: 99–185. https://doi.org/10.1016/0079-1946(61)90004-0
3. Clark J., Farrell W., Peltier W. 1978. Global changes in postglacial sea level: Numerical calculations. Quaternary Research, 9(3): 265–287 https://doi.org/10.1016/0033-5894(78)90033-9
4. Lambeck K., Purcell A., Johnston P., Nakada M., Yokoyama Y. 2003. Water-load de?nition in the glacio-hydro-isostatic sea-level equation. Quaternary Science Reviews, 22(2–4): 309–318. https://doi.org/10.1016/s0277-3791(02)00142-7
5. Bulgakov R.F., Senachin V.N. 2019. Marine terraces and hydroisostasy influence on the vertical movements of the Sakhalin. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(3): 277–286. (In Russ.). https://doi.org/10.30730/2541-8912.2019.3.3.277-286
6. Zverev A.T. 2020. Eustatic fluctuations in World Ocean level. Geodesy and Aerophotosurveying, 64(2):157–163. (In Russ.). https://doi.org/10.30533/0536-101x-2020-64-2-157-163
7. Yokoyama Y., Purcell A. 2021. On the geophysical processes impacting palaeosea level observations. Geoscience Letters, 8(13). https://doi.org/10.1186/s40562-021-00184-w
8. Roy K., Peltier W.R. 2015. Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the U.S. East coast with geological constraints. Geophysical J. International, 201(2): 1156–1181. https://doi.org/10.1093/gji/ggv066
9. Bulgakov R.F., Ivashchenko A.I., Kim Ch.U., Sergeev K.F., Strel’tsov M.I., Kozhurin A.I., Besstrashnov V.M., Strom A.L., Suzuki Y., Tsutsumi H., Watanabe M., Ueki T., Shimamoto T., Okumura K., Goto H., Kariya Y. 2002. [Active faults of Sakhalin]. Geotektonika, 36(3): 227–246. (In Russ.).
10. Stepashko A.A. 2010. Deep roots of seismotectonics in the Far East: the Sakhalin zone. Russian J. of Pacific Geology, 4(3): 228–241. (In Russ.).
11. Kozhurin A.I. 2013. [ Active geodynamics of the northwest sector of the Pacific tectonic belt (according to the active fault studies) ]: [extended abstract of dissertation … Dr. Sci. (Geol. and Miner.)]. Moscow, Institut fiziki Zemli im. O.Yu. Shmidta RAN. (In Russ.).
12. Nicholson U., VanLaningham S., Macdonald D.I.M. 2013. Quaternary landscape evolution over a strike-slip plate boundary: Drainage network response to incipient orogenesis in Sakhalin, Russian Far East. Geosphere, 9(3): 588–601. https://doi.org/10.1130/ges00883.1
13. Tataurova À.A. 2015. Stress and strain fields based on data on crustal earthquake mechanisms in Sakhalin Island. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 3(27): 93–101. (In Russ.).
14. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237
15. Heidbach O., Rajabi M., Fuchs K., Muller B. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
16. Suzuki Y., Tsustsumi H., Watanabe M., Ueki T., Okumura K., Goto H., Streltsov M.I., Kozhurin A.I., Bulgakov R.F., Terentief N., Ivashchenko A.I. 2000. Geology and geomorphology of the Sakhalin Island: Preliminary report on active faults in Sakhalin, Russia. J. of Geography (Chigaku Zasshi), 109(2): 311–317. https://doi.org/10.5026/jgeography.109.2_311
17. Senachin V.N., Veselov O.V., Semakin V.P., Kochergin E.V. 2013. [Digital model of the Earth’s crust of the Sea of Okhotsk region]. Geoinformatika, 4: 33–44. (In Russ.).
18. Reynolds S.D., Coblentz D.D., Hillis R.R. 2002. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling. J. of Geophysical Research, 107(B7). https://doi.org/10.1029/2001jb000408
19. Zhao S., Muller R.D. 2003. Three-dimensional finite-element modelling of the tectonic stress field in continental Australia. In: Evolution and Dynamics of the Australian Plate, p. 71–89. https://doi.org/10.1130/0-8137-2372-8.71
20. Dziewonski’ A.M., Anderson D.L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
21. Zharkov V.N. 2013. [ Interior structure of the Earth and planets: elementary introduction to planetary and satellite geophysics ]. Moscow: Nauka i obrazovanie, 414 p. (In Russ.).
22. Sakulina T.S., Kalenich A.P., Atakov A.I., Tikhonova I.M., Krupnova N.A., Pyzh’yanova T.M. 2011. [Geological model of the Sea of Okhotsk region according to the data of 1-OM and 2-DV profiles]. Razvedka i okhrana nedr, 10: 11–17. (In Russ.).
23. Suvorov A.I. 1968. Deep faults of the Earth. Priroda = Nature, 9: 30–41.
24. Ivolga E.G., Manilov Yu.F. 2019. Structure of the lithosphere in the zone of the continent–ocean transition in the southern part of the Russian Far East: Evidence from the density modeling. Russian J. of Pacific Geology, 13(6): 493–509. https://doi.org/10.1134/s1819714019060034
25. Kamenev P.A., Zabolotin A.E., Degtyarev V.A., Zherdeva O.A. 2019. Geomechanical model of South Sakhalin active fault. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(3): 287–295. (In Russ.). https://doi.org/10.30730/2541-8912.2019.3.3.287-295
26. Prytkov A.S., Vasilenko N.F. 2016. [Geodynamics of the North Sakhalin after the 1995 Mw=7.1 Neftegorsk earthquake according to the GPS observation data]. Monitoring. Nauka i tekhnika, 3(28): 9–12. (In Russ.).
27. Prytkov A.S., Vasilenko N.F. 2018. Earth surface deformation of the Sakhalin Island from GPS data. Geodynamics & Tectonophysics, 9(2): 503–514. (In Russ.). https://doi.org/10.5800/GT-2018-9-2-0358
28. Korotkiy A.M., Pushkar’ V.S., Grebennikova T.A. 1997. [ Marine terraces and quaternary history of the Sakhalin shelf ]. Vladivostok: Dal’nauka, 229 p. (In Russ.).
29. Bulgakov R.F. 2021. 3D modeling of the hydroisostasy effect with a configuration of Moho surface of the Sea of Okhotsk close to real. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 5(4): 339–345. (In Russ., abstr. in Engl.). https://doi.org/10.30730/gtrz.2021.5.4.339-345
30. Polets Y. 2019. The stress state of the Sakhalin Island and adjacent territories. IOP Conference Series: Earth and Environmental Science, 324(1): 012010. https://doi.org/10.1088/1755-1315/324/1/012010
31. Tsukuda T. 1985. Long-term seismic activity and present microseismicity on active faults in Southwest Japan. In: Kisslinger C., Rikitake T. (eds) Practical approaches to earthquake prediction and warning. Dordrecht: Springer, ch. 3: 253–284. https://doi.org/10.1007/978-94-017-2738-9_4
32. Okada A., Takemura K., Katon S. 1998. Characteristics of the Nojima fault, a major surface rupture associated with the 1995 Hyogoken-Nanbu earthquake, in the northern part of Awaji Island, Western Japan. Humans and Nature, 9: 33–56. https://doi.org/10.24713/hitotoshizen.9.0_33
33. Kozhurin A.I., Ponomareva V.V., Pinegina T.K. 2008. Active fault tectonics of the south of Central Kamchatka. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 2: 10–27. (In Russ.).
34. Tsutsumi H., Suzuki Y., Kozhurin A.I., Strel’tsov M.I., Ueki T., Goto H., Okumura K., Bulgakov R.F., Kitagawa H. 2005. Late Quaternary faulting along the western margin of the Poronaysk Lowland in Central Sakhalin, Russia. Tectonophysics, 407: 257–268.
35. McCalpin J.P. (ed.) 1996. Paleoseismology. 1st ed. USA, Academic Press. (International Geophysics Series; 62). 2nd ed. 2009. URL: https://www.irsm.cas.cz/ext/ethiopia/materials/papers/tectonic_geomorphology/Paleoseismology_McCalpin.pdf
36. Anderson J.G., Wesnousky S.G., Stirling M.W. 1996. Earthquake size as a function of fault slip rate. Bull. of the Seismological Society of America, 86(3): 683–690.
37. Kasahara K. 1985. Earthquake mechanics. Moscow: Mir, 264 p.
38. Kocharyan G.G. 2016. Geomechanics of faults. Ìoscow: GEOS, 424 p. (In Russ.).
39. Lomtev V.L., Gurinov M.G. 2009. The tectonic conditions of the August 2, 2007, M ~6.1 Nevelsk earthquake. Russian J. of Pacific Geology, 3(5): 450–459.