Abstract PDF ENG | Резюме PDF RUS | Full text PDF RUS&ENG |
Abstract. The network of geodynamic GNSS observations was deployed in 2006 throughout the Kuril island arc from Japan to Kamchatka. The network includes 11 stations of continuous and periodic registration. The article provides information on the organization of the network and its current status. The creation of the GNSS network provided extensive material for studying the modern geodynamic processes in the Kuril segment of the subduction zone of the North American (Okhotsk) and Pacific lithospheric plates. The performed observations made it possible to obtain the first information on the modern geodynamics of the region. The article presents an overview of the results of the previous years obtained by the authors together with other researchers. The source models of the largest seismic events are constructed on the basis of the instrumental data: the 2006 Mw 8.3 and 2007 Mw 8.1 Simushir earthquake doublet and the 2013 Mw 8.3 deep-focus Okhotsk earthquake. At the initial stage of the post-seismic process in the epicentral zone of the Simushir earthquakes, the dependence of the asthenosphere viscosity on the observed post-seismic displacement velocity of the Earth’s surface was found. The results obtained earlier were supplemented by new data on the changes in the geodynamic setting in the subduction zone. The dynamics of the transient decaying post-seismic process in the central part of the island arc is studied. Stress relaxation in the Earth’s crust at various stages of this process could be the trigger of powerful volcanic eruptions occurred in 2009–2019 on the central Kuril Islands. The seismic potential of various segments of the Kuril subduction zone has been clarified on the basis of the modeling of current mechanical coupling of lithospheric plates. It contributes to a more accurate assessment of the seismic hazard of the region together with other methods. The continuation of the GNSS observations on the Kuril Islands in the future will allow us to study in detail the features of the modern geodynamics of the region.
Keywords:
modern geodynamics, GNSS observations, earthquake, modeling
For citation: Vasilenko N.F., Prytkov A.S., Frolov D.I. Geodynamic GNSS observations on the Kuril Islands. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 4, pp. 287–302. (In Russ. & Engl.).
https://doi.org/10.30730/gtrz.2022.6.4.287-294.295-302, https://www.elibrary.ru/rlpzkk
Для цитирования: Василенко Н.Ф., Прытков А.С., Фролов Д.И. Геодинамические GNSS наблюдения на Курильских островах. Геосистемы переходных зон, 2022, т. 6, № 4, с. 287–302.
https://doi.org/10.30730/gtrz.2022.6.4.287-294.295-302, https://www.elibrary.ru/rlpzkk
References
1. Zakharov V.K., Vasilenko N.F., Naumov N.V. 1982. Horizontal deformation of the earth surface on Sakhalin and Shicotan islands. Tikhookeanskaya geologiya, (1): 119–122. (In Russ.).
2. Laverov N.P. (ed.) 1995. [ The 1994 Shikotan earthquake: epicentral observations and earthquake source ]: Informatsionno-analiticheskiy byulleten’ FSSN. Мoscow: JIPE RAS, 136 p. (In Russ.).
3. Steblov G.M., Kogan M.G., Levin B.V., Vasilenko N.F., Prytkov A.S., Frolov D.I. 2008. Spatially linked asperities of the 2006–2007 great Kuril earthquakes revealed by GPS. Geophysical Research Letters, 35(22): L22306. http://dx.doi.org/10.1029/2008GL035572
4. Bykov V.G., Shestakov N.V., Gerasimenko M.D., Sorokin A.A., Konovalov A.V., Prytkov A.S., Vasilenko N.F., Safonov D.A., Kolomiets A.G., Serov M.A., Pupatenko V.V., Korolev S.P., Verkhoturov A.L., Zhizherin V.S., Ryabinkin K.S. 2020. Unified observation network for geodynamic monitoring in FEB RAS: formation, 10 years of development and major achievements. Vestnik of Far Eastern Branch of Russian Academy of Sciences, 211(3): 5–24. (In Russ.). https://doi.org/10.37102/08697698.2020.211.3.001
5. Dach R., Lutz S., Walser P., Fridez P. 2015. Bernese GNSS Software Version 5.2: User manual. Astronomical Inst., University of Bern: Bern Open Publ., 862 p. https://doi.org/10.7892/boris.72297
6. King R.W., Bock Y. 2006. Documentation for the GAMIT GPS software analysis version 10.3. Massachusetts Inst. of Technology (MIT), 182 p.
7. Altamimi Z., Collilieux X., Metivier L. 2011. ITRF2008: an improved solution of the international terrestrial reference frame. J. of Geodesy, 85(8): 457–473. https://doi.org/10.1007/s00190-011-0444-4
8. Fedotov S.A., Solomatin A.V., Chernyshev S.D. 2007. A long-term earthquake forecast for the Kuril-Kamchatka island arc for the period 2006–2011 and a successful forecast of the Ms = 8.2 Middle Kuril earthquake of November 15, 2006. J. of Volcanology and Seismology, 1(3): 143–163.
9. Вourgeois J., Pinegina T., Razhigaeva N., Kaistrenko V., Levin B.V., MacInnes B., Kravchunovskaya E. 2007. Tsunami run up in the middle Kuril Islands from the great earthquake of 15 Nov 2006. In: EosTrans. American Geophysical Union, Fall. Meet. Suppl., 88(52): Abstract S51C–02.
10. Steblov G.M., Ekstrom G., Kogan M.G., Freymueller J.T., Titkov N.N., Vasilenko N.F., Nettles M., Gabsatarov Yu.V., Prytkov A.S., Frolov D.I., Kondratyev M.N. 2014. First geodetic observations of a deep earthquake: the 2013 Sea of Okhotsk Mw 8.3 event. Geophysical Research Letters, 41(11): 3826–3832. https://doi.org/10.1002/2014GL060003
11. Prytkov A.S., Vasilenko N.F. 2022. The March 25, 2020 Mw 7.5 Paramushir earthquake and its impact on recent geodynamics of the adjacent section of the Kuril-Kamchatka subduction zone. Geodynamics & Tectonophysics, 13(3): 0641. (In Russ.). https://doi.org/10.5800/GT-2022-13-3-0641
12. Kogan M.G., Vasilenko N.F., Frolov D.I., Freymueller J.T., Steblov G.M., Prytkov A.S., Ekstrom G. 2013. Rapid post-seismic relaxation after the great 2006–2007 Kuril earthquakes from GPS observations in 2007–2011. J. of Geophysical Research: Solid Earth, 118(7): 3691–3706. https://doi.org/10.1002/jgrb.50245
13. Hu Y., Wang K., He J., Klotz J., Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for post-seismic deformation of the great 1960 Chile earthquake. J. of Geophysical Research: Solid Earth, 109(B12): B12403. https://doi.org/10.1029/2004JB003163
14. Suito H., Freymueller J.T. 2009. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. of Geophysical Research: Solid Earth, 114(B11): B11404. https://doi.org/10.1029/2008JB005954
15. Burgmann R., Kogan M.G., Steblov G.M., Hilley G., Levin V.E., Apel E. 2005. Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J. of Geophysical Research: Solid Earth, 110(B07): B07405. https://doi.org/10.1029/2005JB003648
16. Rybin A.V., Chibisova M.V., Degterev A.V. 2018. Monitoring of volcanic activity in the Kurile Islands: 15 years of work SVERT group. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(3): 259–266. (In Russ.).
17. Degterev A.V., Chibisova M.V. 2019. The eruption of Raikoke volcano in June of 2019 (Raikoke Island, Central Kuril Islands). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(3): 304–309. (In Russ.). https://doi.org/10.30730/2541-8912.2019.3.3.304-309
18. Levin B.W., Prytkov A.S., Vasilenko N.F., Frolov D.I. 2020. The contemporary seismic deficit in the Kuril-Kamchatka subduction zone. Doklady Earth Sciences, 491(2): 277–281. https://doi.org/10.1134/S1028334X20040108
19. Fedotov S.A., Solomatin A.V. 2019. Long-term earthquake prediction (LTEP) for the Kuril-Kamchatka island arc, June 2019 to May 2024; properties of preceding seismicity from January 2017 to May 2019: The development and practical application of the LTEP method. J. of Volcanology and Seismology, 13(6): 349–362. https://doi.org/10.1134/S0742046319060022