Abstract PDF ENG | Ðåçþìå PDF RUS | Full text PDF RUS |
Abstract. The methods of remote sensing of the Earth, due to their efficiency and information content, are widely used to research vegetation dynamics and monitor volcanic activity. The purpose of this work is to research the dynamics of the mud volcanic landscapes and vegetation cover of the Yuzhno-Sakhalinsk mud volcano, as well as its eruption, using Earth remote sensing data. The total area of the study area is 11.5 km2. The work was done in QGIS 3.16 program using Sentinel-2B satellite image, images from Google Earth program and graphic maps of the study area created by O.A. Melnikov and V.V. Ershov. An updated large-scale schematic map of the Yuzhno-Sakhalinsk mud volcano has been created, displaying all known volcanic eruption fields over the last 70 years, modern and extinct eruptive centers. A semi-automatic classification of the Sentinel-2B satellite image was carried out using the methods of supervised and unsupervised classification using the Semi-Automatic Classification Plugin module. Based on the results of two types of classification, the areas of vegetation classes of the study area were calculated and two maps of the vegetation cover of the Yuzhno-Sakhalinsk mud volcano were created on a scale of 1 : 50 000 as of 2018. The maps need to be refined, but they can already be used to analyze the dynamics of the vegetation cover of the study area. In our opinion, it is more expedient to apply unsupervised classification before conducting a field survey of the area of interest, and supervised classification after. The practical significance of satellite monitoring of the Yuzhno-Sakhalinsk mud volcano lies in the ability to quickly monitor its activity, assess the recreational load and study the impact of volcano activity on vegetation and the landscape as a whole.
Keywords:
satellite monitoring, space imagery, mud volcano, eruption, semi-automatic classification, vegetation recovery dynamics, natural stress, mud volcano landscape
For citation: Shvidskaya K.A., Kopanina A.V. Large-scale mapping of the vegetation of the Yuzhno-Sakhalinsk mud volcano and the adjacent landscape (Sakhalin Island) using satellite data. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 3, pp. 256–276. (In Russ.).
https://doi.org/10.30730/gtrz.2022.6.3.256-276, https://www.elibrary.ru/cxolys
Äëÿ öèòèðîâàíèÿ: Øâèäñêàÿ Ê.À., Êîïàíèíà À.Â. Êðóïíîìàñøòàáíîå êàðòîãðàôèðîâàíèå ðàñòèòåëüíîñòè Þæíî-Ñàõàëèíñêîãî ãðÿçåâîãî âóëêàíà è ïðèëåãàþùåãî ëàíäøàôòà (î. Ñàõàëèí) ïî ñïóòíèêîâûì äàííûì. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 3, ñ. 256–276.
https://doi.org/10.30730/gtrz.2022.6.3.256-276, https://www.elibrary.ru/cxolys
References
1. Shabanov N.V., Bartalev S.A., Eroshenko F.V., Plotnikov D.E. 2018. Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa = Current Problems in Remote Sensing of the Earth from Space, 15(4): 166–178. (In Russ., abstr. in Engl.). http://doi.org/10.21046/2070-7401-2018-15-4-166-178
2. Rybin A.V., Chibisova M.V., Degterev A.V. 2018. Monitoring of volcanic activity in the Kuril Islands: 15 years of work SVERT group. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(3): 259–266. (In Russ., abstr. in Engl.). http://doi.org/10.30730/2541-8912.2018.2.3.259-266
3. Verkhoturov A.A. 2020. Analysis of changes in the state of ecosystems on Atlasova Island (Kuril Islands). Vestnik SGUGiT = Vestnik SSUGT, 25(3): 139–150. (In Russ., abstr. in Engl.). http://doi.org/10.33764/2411-1759-2020-25-3-139-150
4. Melkiy V.A., Verhoturov A.A., Bratkov V.V. 2021. Assessment impact of Tyatya volcano explosive eruptions (Kunashir Island, Kuril Islands) on the vegetation cover basing on the Earth’s remote sensing data. Izv. vuzov. Geodeziya i aerophotos’yomka = Izv. vuzov. Geodesy and Aerophotosurveying, 65(2): 184–193. (In Russ., abstr. in Engl.).
5. Teltscher K., Fassnacht F.E. 2018. Using multispectral Landsat and Sentinel-2 satellite data to investigate vegetation change at Mount St. Helens since the great volcanic eruption in 1980. J. of Mountain Science, 15(9): 1851–1867. http://doi.org/10/1007/s11629-018-4869-6
6. Schutter A.D., Kervyn M., Canters F., Bosshard-Stadlin S.A., Songo M.A., Mattsson H.B. 2015. Ash fall impact on vegetation: a remote sensing approach of the Oldoinyo Lengai 2007–08 eruption. J. of Applied Volcanology, 4(15): 1–18. http://doi.org/10.1186/s13617-015-0032-z
7. Mishurinskij D.V., Ershov V.V., Zharkov R.V., Kopanina A.V., Kozlov D.N., Lebedeva E.V., Abdullaeva I.V., Vlasova I.I., Mikhalev D.V. 2018. Geological-geomorphological and landscapes-ecological features of the Pugachev Mud Volcano as a basis for organization and information support of the tourist route (Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(4): 398–408. (In Russ., abstr. in Engl.). http://doi.org/10.30730/2541-8912.2018.2.4.398-408
8. Mishurinskij D.V., Lebedeva E.V. 2020. [Geological and geomorphological features of mud volcanism on Sakhalin as a basis for cognitive recreational activities]. In: [Relief and nature management: Proceedings of the All-Russian conference with international participation VIII Shchukin readings, 28 Sept. – 1 Oct. 2020, Moscow ]. Moscow: MSU, p. 453–460. (In Russ.).
9. Lebedeva E.V., Mishurinskii D.V. 2021. Features of structure and development of the relief of the Yuzhno-Sakhalinsk mud volcano (Sakhalin Is.). Geomorfologia = Geomorphology, 52(1): 75-85. (In Russ., abstr. in Engl.). http://doi.org/10.31857/S0435428121010090
10. Korznikov K.A. 2017. Vegetation dynamics at two mud volcanoes of Sakhalin Island (Russia): comparison of chronosequences. Botanica Pacifica, 6 (2): 13–20. http://doi.org/10.17581/bp.2017.06203
11. Ivanov A.Yu., Matrosova E.R., Kucheiko A.Yu., Filimonova N.A., Evtushenko N.V., Terleeva N.V., Libina N.V. 2020. Search and detection of natural oil seeps in the Russian seas using spaceborne SAR imagery. Issledovanie Zemli iz kosmosa, 5: 43–62. (In Russ., abstr. in Engl.). http://doi.org/10.31857/S0205961420050061
12. Skrypitsyna T.N., Florinsky I.V., Beloborodov D.E., Gaydalenok O.V. 2020. Mud volcanism at the Taman Peninsula: multiscale analysis of remote sensing and morphometric data. Remote Sensing, 12(22): 3763. http://doi.org/10.3390/rs12223763
13. Lavrova O.Yu., Uvarov I.A., Krasheninnikova Yu.S. 2021. Satellite observations of the eruption of a mud volcano on the Dashly Island in the Caspian Sea on July 4, 2021. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa = Current Problems in Remote Sensing of the Earth from Space, 18(3): 332–336. (In Russ., abstr. in Engl.). http://doi.org/10.21046/2070-7401-2021-18-3-332-336
14. Santagata T. 2017. Monitoring of the Nirano mud volcanoes Regional Natural Reserve (North Italy) using unmanned aerial vehicles and terrestrial laser scanning. J. of Imaging, 3(42). http://doi.org/10.3390/jimaging3040042
15. Beselly S.M., Wegen M., Grueters U., Reyns J., Dijkstra J., Roelvink D. 2021. Eleven years of mangrove-mudflat dynamics on the mud-volcano-induced prograding delta in East Java, Indonesia: Integrating UAV and satellite imagery. Remote Sensing, 13(6): 1084. http://doi.org/10.3390/rs13061084
16. Brighenti F., Carnemolla F., Messina D., Guidi G.D. 2021. UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily). Natural Hazards and Earth System Sciences, 21: 2881–2898. http://doi.org/10.5194/nhess-21-2881-2021
17. Lio K., Furuya M. 2018. Surface deformation and source modeling of Ayaz-Akhtarma mud volcano, Azerbaijan, as detected by ALOS/ALOS-2 InSAR. Progress in Earth and Planetary Science, 5: 61. http://doi.org/10.1186/s40645-018-0220-7
18. Agustawijaya D.S., Karyadi K., Krisnayanti B.D., Sutanto S. 2017. Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java – Indonesia. Open Geosciences, 9: 689–706. http://doi.org/10.1515/geo-2017-0052
19. Mazzini A., Svensen H., Akhmanov G.G., Aloisi G., Planke S., Malthe-Sorenssen A., Istadi B. 2007. Triggering and dynamics evolution of the LUSI mud volcano, Indonesia. Earth and Planetary Science Letters, 261: 375–388. http://doi.org/10.1016/j.epsl.2007.07.001
20. Mel’nikov O.A., Ershov V.V. 2010. Mud (gas-water-lithoclastite) volcanism of the Sakhalin Island: history, results and prospects in research. Vestnik DVO RAN = Vestnik of the FEB RAS, 6: 87–93. (In Russ., abstr. in Engl.).
21. Ershov V.V. 2015. Problems and methods for geomonitoring and hazard assessment of mud volcanic activity. In: Analysis, prediction and management of natural risks in the modern world: Materials of the 9th International scientific and pract. conf. «GEORISK–2015», 13–14 October, 2015, Moscow. Moscow: RUDN University, vol. 2: 458–463. (In Russ., abstr. in Engl.).
22. Cyranoski D. 2007. Indonesian eruption: muddy waters. Nature, 445: 812–815. http://doi.org/10.1038/445812a
23. Kopanina A.V., Shvidskaya K.A. 2021. Possibility of using satellite-based monitoring for large-scale mapping and research of dynamics of mud volcanic landscapes. IOP Conf. Series: Earth and Environmental Science, 946: 012040. https://doi.org/10.1088/1755-1315/946/1/012040
24. Mel’nikov O.A. 2002. [Yuzhno-Sakhalinsk gas-water-lithoclastic (mud) volcano as a unique object of nature in the Russian Far East: a guidebook for excursions to the volcano for participants in the International scientific symposium, 24–28 Sept. 2002, Yuzhno-Sakhalinsk ]. Yuzhno-Sakhalinsk: IMGiG SakhNC DVO RAN [IMGG SakhSC FEB RAS], 48 p. (In Russ.).
25. Ershov V.V., Nikitenko O.A. 2017. Isotopic and chemical composition of waters of the Yuzhno-Sakhalinsk mud volcano (sampling in 2009 and 2010). Izvestiya vuzov. Severo-Kavkazskii region, 4(1): 110–120. (In Russ., abstr. in Engl.). http://doi.org/10.23683/0321-3005-2017-4-1-110-120
26. Korznikov K.A. 2014. Plant communities of the Yuzhno-Sakhalinsk mud volcano. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiia = Tomsk State University J. of Biology, 1(25): 56–65. (In Russ., abstr. in Engl.).
27. Ustyugov G.V., Ershov V.V. 2021. Mud volcanism as a dangerous phenomenon for oil and gas facilities. IOP Conf. Series: Earth and Environmental Science, 946: 012030. http://doi.org/10.1088/1755-1315/946/1/012030
28. Nikitenko O.A., Ershov V.V. 2020. Hydrogeochemical characteristics of mud volcanism manifestations on Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(3): 321–350. (In Russ. & Engl.). http://doi.org/10.30730/gtrz.2020.4.3.321-335.336-350
29. Nikitenko O.A., Ershov V.V., Perstneva J.A., Bondarenko D.D., Baloglanov E.E., Abbasov O.R. 2018. Substance composition produced by mud volcanoes of Sakhalin Island and Azerbaijan: the first comparison. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(4): 346–358. (In Russ., abstr. in Engl.). http://doi.org/10.30730/2541-8912.2018.2.4.346-358
30. Nikitenko O.A., Ershov V.V. 2021. Possibility of hydrogeochemical classification of fluid systems. Izv. Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bull. of the Tomsk Polytechnic University. Geo Assets Engineering, 332(8): 109-125. (In Russ., abstr. in Engl.).
31. Sokol E.V., Kokh S.N., Nekipelova A.V., Abersteiner A., Seryotkin Y.V., Ershov V.V., Nikitenko O.A., Deviatiiarova A.S. 2021. Ge-Hg-Rich sphalerite and Pb, Sb, As, Hg, and Ag sulfide assemblages in mud volcanoes of Sakhalin Island, Russia: An insight into possible origin. Minerals, 11: 1186. http://doi.org/10.3390/min11111186
32. Kopanina A.V. 2019. Vegetation of the Yuzhno-Sakhalinsky mud volcano as an indicator of activity. IOP Conf. Series: Earth and Environmental Science, 324: 012032. http://doi.org/10.1088/1755-1315/324/1/012032
33. Ershov V.V., Kopanina A.V. 2017. [The chemical composition of water extracts from the soils of mud volcanic landscapes]. In: [Geography: development of science and education. Pt. I: Materials of the annual International scientific and practical conference LXX Herzen readings, 20–23 April, 2017, St.-Petersburg ]. St.-Petersburg: The Herzen University, p. 142–147. (In Russ.).
34. Kopanina A.V., Talskikh A.I., Vlasova I.I., Kotina E.L. 2022. Age-related pattern in bark formation of Betula ermanii growing in volcanic environments from southern Sakhalin and Kuril Islands (Northeast Asia). Trees, 36(3): 915–939. https://doi.org/10.1007/s00468-021-02257-x
35. Kopanina A.V., Lebedeva E.V., Vlasova I.I. 2018. Features of vegetation restoration after the eruption of 1907 Ksudach caldera in the south of the Kamchatka Peninsula. Izv. Rossiiskoi akademii nauk. Seriya Geograficheskaya, 6: 57–69. (In Russ., abstr. in Engl.). http://doi.org/10.1134/S2587556618060092
36. Kopanina A.V., Lebedeva E.V., Vlasova I.I., Talskikh A.I. 2020. Structural traits of woody plants and geomorphological conditions to the vegetation recovery at Ksudach caldera (Southern Kamchatka) since the explosive eruption in 1907. J. of Mountain Science, 17(7): 1613–1635. http://doi.org/10.1007/s11629-019-5583-8
37. Talskikh A.I., Kopanina A.V., Vlasova I.I. 2019. Structural features of the bark in young stems of Betula ermanii Cham. in the conditions of Yuzhno-Sakhalinsky mud volcano (Sakhalin Island). IOP Conf. Series: Earth and Environmental Science, 324: 012032. http://doi.org/10.1088/1755-1315/324/1/012033
38. Talskikh A.I., Kopanina A.V., Vlasova I.I. 2021. Structural features of Betula ermanii (Betulaceae) in coastal and active volcanic landscapes of the Russian Far East. Rastitelnye Resursy, 57(2): 124–144. (In Russ., abstr. in Engl.). http://doi.org/10.31857/S0033994621020096
39. Rua L., Bright P., Gall-Queguineur G. 2020. QGIS for census and survey mapping: training manual. Oceania: Pacific Community (SPC), 91 p. (In Russ. & Engl.).
40. Congedo L. 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. The J. of Open Source Software, 6(64): 3127. http://doi.org/10.21105/joss.03172
41. Kurbatskiy D.V. 2005. [Interpretation of Landsat TM/ETM+ data channel combination ]. URL: https://gis-lab.info/qa/landsat-bandcomb.html (accessed 23.12.2021). (In Russ.).
42. Dolgopolov D.V. 2021. Methods for detecting water objects in the pipelines zone during floods based on space monitoring data. Monitoring. Nauka i technologii = Monitoring. Science and Technologies, 1(47): 75–83. (In Russ., abstr. in Engl.).
43. Malysheva N.V. 2018. Fundamentals of automated interpretation of aerospace images of forests using GIS: a tutorial. Moscow: ÌESKH, 136 p. (In Russ.).
44. Lurie I.K., Kosikov A.G. 2003. [Theory and practice of digital image processing ]. Moscow: Nauchnyy mir [Scientific World], 168 p. (In Russ.).
45. Mel’nikov O.A., Sabirov R.N. 1999. [New data on the current state and former activity of the Yuzhno-Sakhalinsk gas-water-mud volcano (Sakhalin Island)]. Tikhookeanskaya geologiya = Geology of the Pacific Ocean, 18(3): 37–46. (In Russ.).
46. Saito F. 1928. [Mud volcanoes near the Toyohara-Maoka railway in South Sakhalin]. Chigaku Zashi, 40(477): 1–5 (In Japanese). Cited from: Saito F. [Mud volcanoes near the Toyohara-Maoka railway in South Sakhalin]. Transl. from Japanese by Z.I. Kurganova. Typescript. Novoaleksandrovsk, SakhKNII SB AS USSR, 1959. (Yuzhno-Sakhalinsk, Library of IMGG FEB RAS). (In Russ.).
47. Shennikov A.P. 1964. [Introduction to geobotany ]. Leningrad: LOLGU [Leningrad Order of Lenin State University], 448 p. (In Russ.).
48. Stepanovskikh A.S. 2017. [General Ecology: Textbook for higher educational institutions]. Moscow: UNITY-DANA, 687 p. (In Russ.).
49. Karpachev A.P. 2016. [Landsat satellite image classification experience using Semi-Automatic Classification Plugin in QGIS ]. URL: https://gis-lab.info/qa/landsat_qgis_scp.html (accessed 21.12.2021). (In Russ.).
50. Karpachev A.P. 2017. [Sentinel 2A satellite image classification experience using Semi-Automatic Classification Plugin in QGIS ]. URL: https://gis-lab.info/qa/qgis-sacp-sentinel2a.html (accessed 21.12.2021). (In Russ.).
51. Komarov A.A., Sukhanov P.A., Kirsanov A.D. 2018. Test monitoring polygons as a tool for the identification of remote sensing data. In: [The use of the Earth remote sensing in agriculture: materials of the All-Russian scientific conf. with international participation, 26–28 Sept. 2018, St.-Petersburg ]. St.-Petersburg: Agrophysical Research Institute, p. 139–145. (In Russ., abstr. in Engl.). http://doi.org/10.25695/agrophysica.2018.2.18778
52. Shikhov A.N., Gerasimov A.P., Ponomarchuk A.I., Perminova E.S. 2020. [Thematic interpretation and interpretation of space images of medium and high spatial resolution: textbook]. (In Russ.). URL: http://www.psu.ru/files/docs/science/books/uchebnie-posobiya/shikhov-gerasimov-ponomarchukperminova-tematicheskoe-deshifrovanie-i-interpretaciyakosmicheskih-snimkov.pdf. (accessed 15.12.2021).
53. Shikhov A., Marakulin Ya. 2012. [Assessment of the aftermath of forest fires in 2010 in the Perm Territory ]. (In Russ.). URL: gis-lab.info/qa/fires-perm.html (accessed 07.08.2021).
54. Martynova M.V., Sultanova R.R., Gabdelkhakov A.K., Rakhmatullin Z.Z., Odintsov G.E. 2020. [Estimation of overgrowth of agricultural lands by tree species according to Landsat satellite data on the example of the site of the Bakalinsky district of the Republic of Bashkortostan ]. (In Russ.). URL: https://inter.volgatech.net/centre-for-sustainable-management-and-remote-monitoring-of-forests/forests-ecosystems-in-a-changing-climate/ (accessed 02.12.2021).
55. Chashchin A.N. 2018. [QGIS satellite image processing basics: a tutorial ]. Permian: IPC «Prokrost», 47 p. (In Russ.).
56. Zubkov I.A., Skripachiov V.O. 2006. [Application of unsupervised classification algorithms in the processing of remote sensing data]. In: [Current problems in remote sensing of the Earth from space (physical foundations, methods and technologies for monitoring the environment, natural and anthropogenic objects): Proceedings of the All-Russian Open Annual Conference, 13–17 November 2006, Moscow ]. Moscow: IKI RAN, p. 57–62. (In Russ.).