Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, ¹ 3, pp. 218–236

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.3.218-236, https://www.elibrary.ru/bxuwrx


Palaeoclimates, vegetation and geochronology of landscape-climatic evolution on the coast of the southwestern margin of Sakhalin in the Middle–Late Holocene
Yuri A. Mikishin1, https://orcid.org/0000-0003-1709-8887, yurimikishin@fegi.ru
Alexei O. Gorbunov2, https://orcid.org/0000-0002-5903-6660, kozlovdn@bk.ru
Irina G. Gvozdeva1, https://orcid.org/0000-0001-7322-4441, gvozdika@fegi.ru
Marina V. Cherepanova3, https://orcid.org/0000-0002-6530-0093, cherepanova@biosoil.ru
1Far East Geological Institute, FEB RAS, Vladivostok, Russia
2Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
3Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, Vladivostok, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract.A comprehensive study of lacustrine-swamp sediments made it possible to clarify the landscape and climatic changes on the sea coast of southwestern Sakhalin from the end of the Atlantic Period of Holocene to the present time. The end of Period (5400–5300 Cal.yrBP) is reflected whith the sediments of a small freshwater lake in the mouth zone of river, which arose during the transgressive phase of the Sea of Japan, the level of which was 2–2.5 m higher than the present day. The climate was much warmer than the present one, and only slightly inferior to Holocene optimum conditions. The vegetation cover consisted of broad-leaved forests with oak predominance and mixed associations. The Subboreal Period was recorded by two events warmer than the present climate. The first of them corresponded to the early thermal maximum of the period (4100–3600 Cal.yrBP), close in terms of heat supply to the final of Atlantic Period. Its relative aridity determined the insignificant participation of dark coniferous species (Picea, Abies) in the vegetation, which was dominated by broad-leaved forests with oak predominance. The second event (3500–2900? Cal.yrBP) corresponded to the late thermal maximum of the Period, with a cooler and more humid climate. It led to a weakening of the significance of broad-leaved forests in the vegetation cover and the appearance of dark coniferous taiga massifs. In the middle of the Subatlantic Period (1700–1450 Cal.yrBP), a climate developed that determined the predominance of the modern taiga landscape, without the participation of the hemlock (Tsuga diversifolia). For the first time, an episode warmer than the current climate was discovered, which most likely corresponded to the relative cooling of the IX – early Xth centuries observed in Japan during the period of the “Medieval Warm Period”. Broad-leaved trees in the forests then met more often than during the warming of the second half of the XIV–XVth centuries and modernity. Anthropogenic changes in the XXth century led to the spread of open landscapes with bamboo thickets in southwestern Sakhalin and the predominance of birch in the vegetation cover.


Keywords:
landscape-climatic change, radiocarbon dating, pollen assemblage, diatoms, sea coast, lacustrine sediments, peat bog

For citation: Mikishin Yu.A., Gorbunov A.O., Gvozdeva I.G., Cherepanova M.V. Palaeoclimates, vegetation and geochronology of landscape-climatic evolution on the coast of the southwestern margin of Sakhalin in the Middle–Late Holocene. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 3, pp. 218–236. (In Russ.).
https://doi.org/10.30730/gtrz.2022.6.3.218-236, https://www.elibrary.ru/bxuwrx

Äëÿ öèòèðîâàíèÿ: Ìèêèøèí Þ.À., Ãîðáóíîâ À.Î., Ãâîçäåâà È.Ã., ×åðåïàíîâà Ì.Â. Ïàëåîêëèìàòû, ðàñòèòåëüíîñòü è ãåîõðîíîëîãèÿ ëàíäøàôòíî-êëèìàòè÷åñêèõ èçìåíåíèé íà ïîáåðåæüå þãî-çàïàäíîé îêðàèíû Ñàõàëèíà â ñðåäíåì–ïîçäíåì ãîëîöåíå. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 3, ñ. 218–236.
https://doi.org/10.30730/gtrz.2022.6.3.218-236, https://www.elibrary.ru/bxuwrx


References

1. Kulakov A.P., Nikol’skaya V.V., Fedorova R.V. 1973. [On landscape evolution in the southwestern Sakhalin]. Izvestiya VGO, 105(2): 133–141. (In Russ.).

2. Nikol’skaya V.V. 1974. O estestvennykh tendentsiyakh razvitiya fiziko-geograficheskikh provintsii yuga Dal’nego Vostoka [On the natural trends in development of the physiographic provinces of the south of the Far East]. Novosibirsk: Nauka, 125 p. (In Russ.).

3. Gvozdeva I.G., Mikishin Yu.A. 2008. [Stratigraphy and paleogeography of the Holocene of the southwestern Sakhalin]. Estestvennye i tekhnicheskie nauki, 3: 177–183. (In Russ.).

4. Mikishin Yu.A., Gvozdeva I.G., Orlova L.A. 2009. Basic Holocene section of South West Sakhalin. In: Environment Development of East Asia in Pleistocene-Holocene (boun­daries, factors, stages of Human mastering): Proceedings of Intern. Scientific Conf., Sept. 14–18, 2009, Vladivostok, Russia. Vladivostok: Dalnauka, p. 149–152.

5. Khotinskii N.A. 1977. Golotsen severnoi Evrazii [Holocene of Northern Eurasia]. Moscow: Nauka, 200 p. (In Russ.).

6. Mikishin Yu.A. 2020. Evolution of landscape-climatic changes on the South Sakhalin in the Atlantic period of Holocene. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 12: 124–131. (In Russ.). https://doi.org/10.17513/use.37548

7. Mikishin Yu.A., Gvozdeva I.G. 2017. Landscape-climatic changes in the South Sakhalin Island in the Middle-Late Atlantic Epoch of the Holocene. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 12: 207–214. (In Russ.). https://doi.org/10.17513/use.36630

8. Mikishin Yu.A., Gvozdeva I.G. 2018. Traces of cooling in the southern Sakhalin in the Late-Glacial and Atlantic period of Holocene. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 3: 107–116. (In Russ.). https://doi.org/10.17513/use.36711

9. Mikishin Yu.A., Pushkar’ V.S., Gvozdeva I.G. 2020. Paleogeo­graphy of the South Sakhalin marine coast in the Subboreal period of Holocene. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences, 10: 97–107. (In Russ.). https://doi.org/10.17513/use.37497

10. Alley R.B., Agustsdottir A.M. 2005. The 8k event: cause and consequences of a major Holocene abrupt climatic change. Quaternary Science Reviews, 24(10-11): 1123–1149. https://doi.org/10.1016/j.quascirev.2004.12.004

11. Magny M., Leuzinger U., Bortenschlager S., Haas J.N. 2006. Tripartite climate reversal in Central Europe 5600–5300 years ago. Quaternary Research, 65(1): 3–19. https://doi.org/10.1016/j.yqres.2005.06.009

12. Weninger B., Clare L., Gerritsen F., Horejs B., Kraub R., Linstadter J., Ozbal R., Rohling E.J. 2014. Neolithisation of the Aegean and Southeast Europe during the 6600–6000 calBC period of Rapid Climate Change. Documenta Praehistorica, 41: 1–31. https://doi.org/10.4312/dp.41.1

13. Borisova O.K. 2014. Landscape and climate change in Holocene. Izv. RAN. Seriya Geograficheskaya = Bull. of the Russian Academy of Sciences. Geographical Series, 2: 5–20. (In Russ.). https://doi.org/10.15356/0373-2444-2014-2-5-20

14. Igarashi Y., Karya Y., Shimokawa K. 2013. An occurrence of pollen Tsuga in late Holocene buried soil in southwest Sakhalin. The Quaternary Research (Daiyonki-Kenkyu), 52(3): 59–64. https://doi.org/10.4116/jaqua.52.59

15. Zemtsova A.I. 1968. [ The climate of Sakhalin ]. Leningrad: Gidrometeoizdat, 197 p. (In Russ.).

16. Nauchno-prikladnoi spravochnik po klimatu SSSR. Seriya 3. Mnogoletnie dannye. Ch. 1–6(34). Sakhalinskaya oblast’ [Scientific and applied handbook on the USSR climate. Series 3. Long-term data Pt 1-6(34). Sakhalin Region]. 1990. Leningrad: Gidrometeoizdat, 352 p. (In Russ.).

17. Yurasov G.I., Yarichin V.G. 1991. Techeniya Yaponskogo morya [Currents of the Sea of Japan]. Vladivostok: DVO RAN, 176 p.

18. Tolmachev A.I. 1955. Geobotanicheskoe raionirovanie ostrova Sakhalin [Geobotanical zoning of Sakhalin Island]. Moscow; Leningrad: Izd-vo AN SSSR, 78 p. (In Russ.).

19. Krestov P.V., Barkalov V.Yu., Taran A.A. 2004. [Botanical and geographical zoning of Sakhalin]. In: Rastitel’nyi i zhivotnyi mir ostrova Sakhalin (Materialy Mezhdunar. Sakhalinskogo proekta) [Flora and fauna of Sakhalin Island (Materials of the International Sakhalin project)]. Vladivostok: Dal’nauka, 2, p. 67–92. (In Russ.).

20. [Vegetation]. 1967. In: Atlas Sakhalinskoi oblasti [Atlas of Sakhalin region]. Moscow: GUGK, p. 105–112. (In Russ.).

21. Paleopalinologiya. Ò. 1. Metodika paleopalinologicheskikh issledovanii i morfologiya nekotorykh iskopaemykh spor, pyl’tsy i drugikh rastitel’nykh mikrofossilii [Paleopalynology. Vol. 1. Methodology for paleopalynological studies and morphology of some fossil spores, pollen and other vegetative microfossils]. 1966. Leningrad: Nedra, 352 p. (Tr. VSEGEI. Nov. ser.; iss. 141). (In Russ.).

22. Mikishin Yu.A., Gvozdeva I.G. 2009. Subfossil’nye sporovo-pyl’tsevye kompleksy Sakhalina i prilegayushchikh territorii [Subfossil spore-pollen complexes of Sakhalin and adjacent areas]. Vladivostok: Izd-vo Dal’nevost. universiteta, 162 p. (In Russ.). https://doi.org/10.17513/np.379

23. Diatomovye vodorosli SSSR (iskopaemye i sovremennye) [Diatom algae of the USSR (fossil and modern]. 1974. Vol. 1. [Practice guideline]. Leningrad: Nauka, 403 p. (In Russ.).

24. Barinova S.S., Medvedeva L.A., Anisimova O.V. 2006. [ Biodiversity of the algae serving as environment indicators]. Tel’-Aviv: Pilies Studio, 498 p.

25. Krammer K., Lange-Bertalot H. 1986. Bacillariophyceae. Teil 1. Naviculaceae. Jena: Gustav Fischer Verlag, 876 p. (In: Ettl H. et al. (eds) Susswasserflora von Mitteleuropa; 2).

26. Krammer K., Lange-Bertalot H. 1988. Bacillariophyceae. Teil 2. Bacillariaceae, Epithemiaceae, Surirellaceae. Jena: Gustav Fischer Verlag, 536 p.

27. Krammer K., Lange-Bertalot H. 1991. Bacillariophyceae. Teil 3. Centrales, Fragilariaceae, Eunotiaceae. Jena: Gustav Fischer Verlag, 576 p.

28. Krammer K. 2000. The genus Pinnularia. In: Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Gantner Verlag K.G., 1, 703 p.

29. Krammer K. 2002. Cymbella. In: Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Gantner Verlag K.G., 3, 584 p.

30. Krammer K. 2003. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In: Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Gantner Verlag K.G., 4, 530 p.

31. Grimm E.C. 2004. TGView 2.0.2 (Software). Springfield: Illinois State Museum, Research and Collections Center. URL: https://www.tiliait.com

32. Bronk Ramsey C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon, 59(2): 1809–1833. https://doi.org/10.1017/rdc.2017.108

33. Khotinskii N.A. 1987. Radiouglerodnaya khronologiya i korrelyatsiya prirodnykh i antropogennykh rubezhei golotsena. In: Novye dannye po geokhronologii chetvertichnogo perioda [Radiocarbon chronology and correlation of natural and anthropogenic boundaries of the Holocene]: K XII kongressu INKVA (Kanada, 1987) [To the XII INKVA congress (Canada, 1987)]. Moscow: Nauka, p. 39–45. (In Russ.).

34. Pevzner M.M. 2015. Golotsenovyi vulkanizm Sredinnogo khrebta Kamchatki [Holocene volcanism of the Sredinny Range of Kamchatka]. Moscow: GEOS, 246 p. (In Russ.).

35. Mikishin Yu.A., Gvozdeva I.G. 1996. Evolyutsiya prirody yugo-vostochnoi chasti ostrova Sakhalin v golotsene [Evolution of nature of the southwest part of Sakhalin Island in the Holocene]. Vladivostok: Izd-vo Dal’nevost. universiteta, 130 p. (In Russ.).

36. Korotkii A.M., Pushkar’ V.S., Grebennikova T.A., Razzhigaeva N.G., Karaulova L.P., Mokhova L.M., Ganzei L.A., Cherepanova M.V., Bazarova V.B., Volkov V.G., Kova­lyukh N.N. 1997. Morskie terrasy i chetvertichnaya istoriya shel’fa Sakhalina [Marine terraces and the quaternary history of Sakhalin shelf]. Vladivostok: Dal’nauka, 195 p. (In Russ.).

37. Mikishin Yu.A., Gvozdeva I.G. 2021. Early to Middle Holocene in Northern Sakhalin. Bull. of the North-East Scientific Center of FEB RAS, 1: 50–65. (In Russ.). https://doi.org/10.34078/1814-0998-2021-1-50-65

38. Hartley B., Ross R., Williams D.M. 1986. A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters. J. of the Marine Biological Association of the United Kingdom, 66(3): 531–610. https://doi.org/10.1017/s0025315400042235

39. Hallfors G. 2004. Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Baltic Sea Environment Proceedings, 95, 210 p.

40. Krayesky D.M., Meave D.C., Zamudio E., Norris E., Fredericq S., Tunnell J. 2009. Diatoms (Bacillariophyta) of the Gulf of Mexico. In: Gulf of Mexico origin, waters, and biota, 1: 155–186.

41. Van Dam H., Mertens A., Sinkeldam J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J. of Aquatic Ecology, 28(1): 117–133. https://doi.org/10.1007/bf02334251

42. Korotky A.M., Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Mokhova L.M., Bazarova V.B., Sulerzhitsky K.A., Lutaenko K.A. 2000. Middle- and late-Holocene environments and vegetation history of Kunashir Island, Kurile Islands, northwestern Pacific. The Holocene, (10)3: 311–331. https://doi.org/10.1191/095968300667552216

43. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Belya­nina N.I., Ganzei K.S., Kaistrenko V.M., Arslanov Kh.A. Maksimov F.E., Rybin A.V. 2019. Manifestation of Late Holocene climatic changes and natural hazards on the south of Urup Island (Kuril archipelago). Bull. of the North-East Scientific Center of FEB RAS, 3: 37–53. (In Russ.). https://doi.org/10.34078/1814-0998-2019-3-37-53

44. Buntgen U., Myglan V.S., Ljung­qvist F.C., McCormick M., Di Cosmo N., Sigl M., Jung­claus J., Wagner S., Krusic P.J., Esper J. et al. 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 8: 231–237. https://doi.org/10.1038/ngeo2652

45. Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Gor­bunov A.O., Ponomarev V.I., Klimin M.A., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu. 2020. Reconstruction of paleotyphoons and recurrence of extreme floods in south Sakhalin Island in Middle–Late Holocene. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(1): 46–70. (In Russ.). https://doi.org/10.30730/2541-8912.2020.4.1.046-070

46. Akhmet’ev M.A. 1993. Fitostratigrafiya kontinental’nykh otlo­zhenii paleogena i miotsena vnetropicheskoi Azii [Phytostratigraphy of the continental sediments of the Paleogene and Miocene of extratropical Asia]. Moscow: Nauka, 143 p. (In Russ.).

47. Yasuda Y. 1976. Early historic forest clearance around the ancient castle site of Tagajo, Miyagi prefecture, Japan. Asian Perspectives, 19 (I): 42–58.

48. Igarashi Y., Igarashi T. 1998. Late Holocene vegetation history in south Sakhalin, northeast Asia. Japanese J. of Ecology, 48: 231–244.

49. Igarashi Y., Sagayama T., Higake N., Fukuda M. 2000. Late Quaternary environmental change in Central and North Sakhalin, Russia. J. of Geography, 109(2): 165–173. https://doi.org/10.5026/jgeography.109.2_165

50. Razzhigaeva N.G., Ganzei L.A., Grebennikova T.A., Belya­nina N.I., Mokhova L.M. 2014. The manifestations of the Holocene Little Climatic Optimum in the southern Far East. Geography and Natural Resources, 35(2): 173–180. https://doi.org/10.1134/s1875372814020097

51. Lamb H.H. 1965. The early medieval warm epoch and its sequel. Palaeogeography, Palaeoclimatolology, Palaeoecology, 1: 13–37. https://doi.org/10.1016/0031-0182(65)90004-0

52. Sakaguchi Y. 1983. Warm and cold stages in the past 7600 years in Japan and their global correlation. Bull. of the Department of Geography of the University of Tokyo, 15: 1–31.

53. Mikishin Yu.A., Gvozdeva I.G. 2016. Late Subatlantic in the south of Sakhalin Island. Uspekhi sovremennogo estestvoznaniia = Advances in Current Natural Sciences, 9: 137–142. (In Russ.). https://doi.org/10.17513/use.36134