Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, № 3, pp. 183–194

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.3.183-194, https://www.elibrary.ru/gokikf


Dynamics of the physicochemical characteristics of the thermomineral waters of the Daginsky field (before the reconstruction of the springs in 2019–2020)
Olga A. Nikitenko, https://orcid.org/0000-0002-0177-2147, nikitenko.olga@list.ru
Valery V. Ershov, https://orcid.org/0000-0003-2289-6103, valery_ershov@mail.ru
Rafael V. Zharkov, https://orcid.org/0000-0002-9753-0627, rafael_zharkov@mail.ru
Gennady V. Ustyugov, https://orcid.org/0000-0002-7269-7439, gen.ustyugov@mail.ru
Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. The paper presents the results of studies (2017 and 2019) of the physicochemical characteristics of the thermomineral waters of the Daginsky field, obtained before the reconstruction of the springs in 2019–2020. The obtained data were compared with the data from the studies of previous years (1958–2014) in order to study the dynamics of the measured indicators in over time. It was found that the waters of the Daginsky field are characterized by the constancy of the chemical composition and reservoir temperatures calculated by means of hydrochemical geothermometers. This fact indicates a stable hydrogeological regime of the field. For many years, spatial hydrogeochemical heterogeneity has also been preserved within the field, which consists in the differences in some physicochemical indicators (surface temperatures, concentrations of Na+, Cl-, SO42-, HCO3-, etc.) of the thermomineral waters discharged in different sites (Northern, Central, Southern). It is shown that the content of microcomponents (B, Br-, Li+) in the studied waters, which were measured in different laboratories (or with different methods of chemical analysis) can differ significantly. The most reliable estimates of reservoir temperatures of the Daginsky field are obtained using Na-K, K-Mg and SiO2 hydrochemical geothermometers. The reservoir temperatures mainly range from 60 to100 °С, which corresponds to a circulation depth of the thermomineral waters of about 2–3 km. These researches provide a basis for the studying the further dynamics of hydrogeochemical indicators of the Daginsky field, including after the reconstruction of the thermomineral springs.


Keywords:
thermomineral waters, chemical composition, hydrochemical geothermometers, Sakhalin Island

For citation: Nikitenko O.A., Ershov V.V., Zharkov R.V., Ustyugov G.V. Dynamics of the physicochemical characteristics of the thermomineral waters of the Daginsky field (before the reconstruction of the springs in 2019–2020). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 3, pp. 183–194. (In Russ.).
https://doi.org/10.30730/gtrz.2022.6.3.183-194, https://www.elibrary.ru/gokikf

Для цитирования: Никитенко О.А., Ершов В.В., Жарков Р.В., Устюгов Г.В. Динамика физико-химических параметров термоминеральных вод Дагинского месторождения (до проведения реконструкции источников 2019–2020 гг.). Геосистемы переходных зон, 2022, т. 6, № 3, с. 183–194.
https://doi.org/10.30730/gtrz.2022.6.3.183-194, https://www.elibrary.ru/gokikf


References

1. Aydin H., Karakus H., Mutlu H. 2020. Hydrogeochemistry of geothermal waters in eastern Turkey: Geochemical and isotopic constraints on water-rock interaction. J. of Volcanology and Geothermal Research, 390: 106708. https://doi.org/10.1016/j.jvolgeores.2019.106708

2. Davraz A. 2008. Hydrogeochemical and hydrogeological investigations of thermal waters in the Usak Area (Turkey). Environmental Geology, 54: 615–628. https://doi.org/10.1007/s00254-007-0829-0

3. Chimeddorj B., Munkhbat D., Altanbaatar B., Dolgorjav O., Oyuntsetseg B. 2021. Hydrogeochemical characteristics and geothermometry of hot springs in the Mongolian Altai region, Mongolia. Geochemistry: Exploration, Environment, Analysis, 21(4). doi:10.1144/geochem2021-016

4. Mao X., Zhu D., Ndikubwimana I., He Y., Shi Z. 2021. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889

5. Micallef A., Person M., Berndt C., Bertoni C., Cohen D., Dugan B., Evans R., Haroon A., Hensen C. et al. 2020. Offshore freshened groundwater in continental margins. Reviews of Geophysics, 58: e2020RG000706. https://doi.org/10.1029/2020RG000706

6. Luo J., Li Y., Tian J., Cheng Y., Pang Z., Gong Y. 2022. Geochemistry of geothermal fluid with implications on circulation and evolution in Fengshun-Tangkeng geothermal field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323

7. Su S., Li Y., Chen Z., Chen Q., Liu Z., Lu C., Hu L. 2022. Geochemistry of geothermal fluids in the Zhangjiakou-Penglai Fault Zone, North China: Implications for structural segmentation. J. of Asian Earth Sciences, 230: 105218. https://doi.org/10.1016/j.jseaes.2022.105218

8. Wei Z.-A., Shao H., Tang L., Deng B., Li H., Wang C. 2021. Hydrogeochemistry and geothermometry of geothermal waters from the Pearl River Delta region, South China. Geothermics, 96: 102164. https://doi.org/10.1016/j.geothermics.2021.102164

9. Wrage, J., Tardani, D., Reich, M., Daniele, L., Arancibia, G., Cembrano, J., Sanchez-Alfaro P., Morata D., Perez-Moreno R. 2017. Geochemistry of thermal waters in the Southern Volcanic Zone, Chile – Implications for structural controls on geothermal fluid composition. Chemical Geology, 466: 545–561. https://doi.org/10.1016/j.chemgeo.2017.07.004

10. Yi L., Qi J., Li X., Xu M., Zhang X., Zhang Q., Tang Y. 2021. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau. J. of Volcanology and Geothermal Research, 414: 107244. https://doi.org/10.1016/j.jvolgeores.2021.107244

11. Zharkov R.V. 2018. Modern physicochemical features of thermomineral water of the Daginsky deposit (Sakhalin Island). Monitoring. Nauka i tekhnologii = Monitoring. Science and Technologies, 4(37): 35–40. (In Russ). https://doi.org/10.25714/MNT.2018.37.004

12. Zharkov R.V. 2008. [Daginsky field of thermomineral waters in the north of Sakhalin Island]. In: Prirodnyye katastrofy: izucheniye, monitoring, prognoz: Sb. materialov II Sakhalinskoy molodezhnoy nauchnoy shkoly, 4–10 iyunya 2007, Yuzhno-Sakhalinsk [Natural catastrophes: study, monitoring, forecast: Proceedings of the II Sakhalin scientific school for young researchers, June 4–10, 2007, Yuzhno-Sakhalinsk]. Yuzhno-Sakhalinsk: IMGG FEB RAS, 285–290. (In Russ.).

13. Pavlova V.Yu., Zharkov R.V. 2018. GPR surveys of the discharge zone of the Daginsky hydrothermal system (Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(4): 323–331. (In Russ). https://doi.org/10.30730/2541-8912.2018.2.4.323-331

14. Zavadskiy I.G. 1991. Razvedochnyye raboty na Daginskom mestorozhdenii termal?nykh vod v Noglikskom rayone: otchet za 1990–1991 gg. [Exploration work at the Daginsky field of thermal waters in the Nogliki District: a report for 1990–1991]. Yuzhno-Sakhalinsk, Sakhalingeology, 218 p. Inv. № 7078 (Fondy FBU TFGI for the Sakhalin Region). (In Russ.).

15. Tsitenko N.D. 1961. [Waters of the Daginsky hot springs on the Island of Sakhalin (on the problem of formation of chemical composition of calcium chloride waters]. Trudy VNIGRI [Transactions of the All-Union Scientific Research Institute of Petroleum Geology], 181: 203–212. (In Russ.).

16. [Geology of the USSR]. Vol. 32. [ Sakhalin Island. Geological description ]. 1970. Moscow: Nedra, 432 p. (In Russ.).

17. [Hydrogeology of the USSR]. Vol. 34. [ Sakhalin Island ]. 1972. Moscow: Nedra, 344 p. (In Russ.).

18. Tsitenko N.D. 1961. [Mud volcanoes in the Daginsky area of Sakhalin Island]. Trudy VNIGRI [Transactions of the All-Union Scientific Research Institute of Petroleum Geology ], 181: 171–175. (In Russ.).

19. Nikitenko O.A., Ershov V.V. 2020. Hydrogeochemical characteristic of mud volcanism manifestations on Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(3): 321–350. (In Russ & Engl.). https://doi.org/10.30730/gtrz.2020.4.3.321-335.336-350

20. Fournier R.O., Potter R.W., II. 1982. A revised and expan­ded silica (quartz) geothermometer. Geothermal Resources Council Bull., 11: 3–12.

21. Giggenbach W.F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749?2765. https://doi.org/10.1016/0016-7037(88)90143-3

22. Kharaka Y.K., Mariner R.H. 1989. Chemical geothermo­meters and their application to formation waters from sedimentary basins. In: Thermal History of Sedimentary Basins, Methods and Case Histories. New York, Springer, 99?117. https://doi.org/10.1007/978-1-4612-3492-0_6

23. Mel’nikov O.A., Sergeev K.F., Rybin A.V., Zharkov R.V. 2005. Nature of mud volcanism: Evidence from the latest active eruption of a mud (Gas-Water-Lithoclastite) volcano in Sakhalin. Doklady Earth Sciences, 400(1): 168–172.

24. Grigel’ N.M. 1959. Kharakteristika i proiskhozhdenie plas­tovykh vod neftenosnykh rayonov Severnogo Sakhalina: pril. k otchetu o NIR «Rezul’taty khimicheskogo analiza vod neftenosnykh rayonov Severnogo Sakhalina» [Characteristic and origin of stratum waters of the oil-bearing areas of the Northern Sakhalin: app. to the report on scientific research “The results of the chemical analysis of the waters of oil-bea­ring areas of the Northern Sakhalin”]. Okha: Sakh. otd-nie VNIGRI, vol. 2, 77 p. Inv. № 1369f (Fondy IMGiG DVO RAN). (In Russ.).

25. Shteyn M.A. 1962. Opredelenie parametrov i glubin zaleganiya termal’nykh podzemnykh vod [Determination of the parameters and depths of underground thermal water occurrence]. Trudy SakhKNII [Transactions of the Sakhalin Complex Scientific Research Institute], 12: 162–165. (In Russ.).