Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, ¹ 3, pp. 145–182

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182, https://www.elibrary.ru/nhwrtf


Earthquake predictions in XXI century: prehistory and concepts, precursors and problems
Leonid M. Bogomolov1, https://orcid.org/0000-0002-9124-9797, bleom@mail.ru
Nailia A. Sycheva2, https://orcid.org/0000-0003-0386-3752, nelya@ifz.ru
1Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
2Shmidt Institute of Physics of the Earth, RAS, Moscow, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS&ENG

Abstract. The review presents the most important results of investigations in the field of strong earthquakes predictions, which were published in scientific sources. The ways of further studies of seismic prognosis problem are involved into consideration, as well as the based theoretical model, to improve predictive methods and algorithms. One can follow the research transformation from initial (historical) articulation of this intriguing problem to its current state of the art, including modern approaches based on the data of seismological and geophysical monitoring, and as well as ionospheric and atmospheric surveys. Examples of successful earthquake predictions have been discussed and treated from viewpoint of the potential of used methods, at least for some regions (for example, Sakhalin and Kamchatka). It is assumed that the predictions, which were realized due to certain algorithms and/or working precursors rather than random guessing, are able to weaken the pessimist side in the discussion: are earthquakes predictable or unpredictable in principle.


Keywords:
earthquake, predictive methods, mid-term prediction, short-term prediction, geophysical, seismological precursors, source-site model, fault

For citation: Bogomolov L.M., Sycheva N.A. Earthquake predictions in XXI century: prehistory and concepts, precursors and problems. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 3, pp. 145–182. (In Russ. & Engl.).
https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182, https://www.elibrary.ru/nhwrtf

Äëÿ öèòèðîâàíèÿ: Áîãîìîëîâ Ë.Ì., Ñû÷åâà Í.À. Ïðîãíîç çåìëåòðÿñåíèé â XXI âåêå: ïðåäûñòîðèÿ è êîíöåïöèè, ïðåäâåñòíèêè è ïðîáëåìû. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 3, ñ. 145–182.
https://doi.org/10.30730/gtrz.2022.6.3.145-164.164-182, https://www.elibrary.ru/nhwrtf


References

1. Angelier J. 1989. From orientation to magnitude in paleostress determinations using fault slip data. J. of Structural Geology, 11(1-2): 37–49. https://doi.org/10.1016/0191-8141(89)90034-5

2. Antsiferov M.S. 1969. [On the opportunities of geoacoustic method for earthquake forecasting]. In: Trudy vserossiyskogo simpoziuma po seysmicheskomu rezhimu (3–7 iyunya 1968 g.) [Proceedings of the All-Russian symposium on seismic regime (June 3–7, 1968)]. Novosibirsk, 2, p. 28–141. (In Russ.).

3. Arutyunyan A.R. 2010. [Modern methods for seismic isolation of buildings and structures]. Inzhenerno-stroitel’nyy zhurnal, 3: 56–60. (In Russ.).

4. Avagimov A.A., Zeigarnik V.A., Okunev V.I. 2011. Dynamics of energy exchange in model samples subjected to elastic and electromagnetic impacts. Izv., Physics of the Solid Earth, 47(10): 919–925. https://doi.org/10.1134/s1069351311100016

5. Bak P., Tang C. 1989. Earthquakes as a self-organized critical phenomenon. J. of Geophysical Research: Solid Earth, 94(B11): 15635–15637. https://doi.org/10.1029/jb094ib11p15635

6. Bakun W.H., Aagaard B., Dost B., Ellsworth W.L. et al. 2005. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature, 437(7061): 969–974. https://doi.org/10.1038/nature04067

7. Barsukov O.M. 1970. [On the connection between electrical resistance of rocks and tectonic processes]. Izv. AN SSSR. Fizika Zemli, 1: 84–89. (In Russ.).

8. Bogomolov L.M., Il’ichev P.V., Novikov V.A., Okunev V.I., Sychev V.N., Zakupin A.S. 2004. Acoustic emission res­ponse of rocks to electric power action as seismic-electric effect manifestation. Annals of Geophysics, 47(1): 65–72. https://doi.org/10.4401/ag-3259

9. Boldina S.V., Kopylova G.N. 2017. Effects of the January 30, 2016, Mw=7.2 Zhupanovsky earthquake on the water level variations in wells YuZ-5 and E-1 in Kamchatka. Geodynamics & Tectonophysics, 8(4): 863–880. (In Russ.). https://doi.org/10.5800/GT-2017-8-4-0321

10. Bonchkovskiy V.F. 1954. [Changes in the gradient of electrical potential in the atmosphere as a possible precursor of earthquakes]. Trudy Geofizicheskogo instituta, 25(152): 192–206. (In Russ.).

11. Bormann P. 2011. From earthquake prediction research to time-variable seismic hazard assessment applications. Pure Applied Geophysics, 168(1-2): 329–366. https://doi.org/10.1007/s00024-010-0114-0

12. Buchachenko A.L. 2014. Magnetoplasticity and the physics of earthquakes. Can a catastrophe be prevented? Physics-Uspekhi, 57: 92–98. https://doi.org/10.3367/ufne.0184.201401e.0101

13. Buchachenko A.L., Oraevskii V.N., Pokhotelov O.A., Sorokin V.M., Strakhov V.N., Chmyrev V.M. 1996. Ionospheric precursors to earthquakes. Physics-Uspekhi, 39: 959–965.

14. Coble R.W. 1965. The effects of the Alaskan earthquake of March 27, 1964, on ground water in Iowa. Proceedings of the Iowa Academy of Science, 72(1): 323–332. URL: https://scholarworks.uni.edu/pias/vol72/iss1/48

15. Dobrovol’skiy I.P. 1991. Teoriya podgotovki tektonicheskogo zemletryaseniya [The theory of tectonic earthquake preparation]. Moscow: IFZ RAN, 218 p. (In Russ.).

16. Drumya A.V. 1985. [Earthquake: where, when, why? ]. Ed. M.A. Sadovskiy. Kishinev: Shtiintsa, 196 p. (In Russ.).

17. Evison F.F., Rhoades D.A. 1993. The precursory earthquake swarm in New Zealand: Hypothesis tests. New Zealand J. of Geology and Geophysics, 36(1): 51–60. https://doi.org/10.1080/00288306.1993.9514553

18. Evison F.F., Rhoades D.A. 1997. The precursory earthquake swarm in New Zealand: Hypothesis tests. II. New Zealand J. of Geology and Geophysics, 40(4): 537–547. https://doi.org/10.1080/00288306.1997.9514782

19. Fedotov S.A. 2005. Dolgosrochnyy seysmicheskiy prognoz dlya Kurilo-Kamchatskoy zony [Long-term seismic forecast for the Kuril-Kamchatka zone]. M.: Nauka, 303 p. (In Russ.).

20. Firstov P.P., Makarov E.O., Glukhova I.P. 2017. Peculiarities of subsoil gas dynamics before the Ì 7.2 Zhupanovo earthquake of January 30, 2016, Kamchatka. Doklady Earth Sciences, 472(2): 196–199. https://doi.org/10.1134/s1028334x17020015

21. Fujii Y. 1966. Gravity change in the shock area of Niigata earthquake, 16 Jun. 1964. Zisin (J. of the Seismological Society of Japan. Ser. 2), 19(3): 202–216. https://doi.org/10.4294/zisin1948.19.3_200

22. Gamburtsev G.A. 1955. [Status and prospects of works in the field of earthquake forecasting]. Bull. Soveta po seysmologii AN SSSR, 1: 7–14. (In Russ.).

23. Gavrilov V.A. 2007. Physical causes of diurnal variations in the geoacoustic emission level. Doklady Earth Sciences, 414: 638–641. https://doi.org/10.1134/S1028334X07040320

24. Gavrilov V.A., Panteleev I.A., Ryabinin G.V., Morozova Yu.V. 2013. Modulating impact of electromagnetic radiation on geoacoustic emission of rocks. Russian J. of Earth Science, 13(1): 1–16. https://doi.org/10.2205/2013es000527

25. Gavrilov V.A., Panteleev I.A., Ryabinin G.V. 2014. The physical basis of the effects caused by electromagnetic for­cing in the intensity of geoacoustic processes. Izv., Physics of the Solid Earth, 50(1): 87–101. https://doi.org/10.1134/s1069351314010042

26. Gavrilov V.A., Panteleev I.A., Descherevskii, Lander A.V., Morozova Yu.V., Buss Yu.Yu., Vlasov Yu.A. 2020. Stress-strain state monitoring of the geological medium based on the multi-instrumental measurements in boreholes: Experience of research at the Petropavlovsk-Kamchatsky geodynamic testing site (Kamchatka, Russia). Pure Applied Geophysics, 177(1): 397–419. https://doi.org/10.1007/s00024-019-02311-3

27. Geller R.J. 1991. Shake-up for earthquake prediction. Nature, 352: 275–276. https://doi.org/10.1038/352275a0

28. Geller R.J. 1996. Debate on evaluation of the VAN Me­thod: Editor’s introduction. Geophysical Research Letters, 23(11): 1291–1293. https://doi.org/10.1029/96gl00742

29. Geller R. 1997. Earthquake prediction: a critical review. Geophysical J. International, 131(3): 425–450. https://doi.org/10.1111/j.1365-246x.1997.tb06588.x

30. Geller R.J., Jackson D.D., Kagan Y.Y, Mulargia F. 1997. Earthquakes cannot be predicted. Science, 275(5306): 1616–1616. https://doi.org/10.1126/science.275.5306.1616

31. [General seismic zoning of the territory of the Russian Federation: Explanatory note to the set of the GSZ-2016 maps and list of the localities situated in seismically active zones]. 2016. Eds V.I. Ulomov, M.I. Bogdanov. 73 p. (In Russ.). http://seismos-u.ifz.ru/documents/zapiska_OCP_2016.pdf

32. Gintov O.B. 2005. Polevaya tektonofizika i ee primenenie pri izuchenii deformatsiy zemnoy kory Ukrainy [Field tectonophysics and its appliance when studying the deformation of the Earth’s crust in Ukraine]. Kiev: Feniks, 572 p.

33. Goldin S.V., Dyad’kov P.G., Dashevskiy Yu.A. 2001. The South Baikal geodinamic testing ground: Strategy of earthquake prediction. Russian Geology and Geophysics, 42(10): 1484–1496. (In Russ.).

34. Gokhberg M.B., Kolosnitsyn N.I. 2010. [Trigger mechanisms of earthquakes]. In: [Trigger effects in geosystems: Proceedings of the All-Russian alignment meeting, Moscow, June 22–24, 2010]. Moscow: GEOS, p. 52–61. (In Russ.).

35. Gokhberg M.B., Morgunov V.A., Aronov E.L. 1979. On the high-frequency electromagnetic radiation associated with seismic activity. Doklady AN SSSR, 248(5): 1077–1081. (In Russ.).

36. Gufeld I.L., Afanasyev A.V., Afanasyeva V.V., Novoselov O.N. 2010. Trigger effects of seismotectonic processes in a dynamically changing geological medium. Doklady Earth Sciences, 433(1): 901–905.

37. Gufeld I.L., Matveeva M.I., Novoselov O.N. 2011. Why we cannot predict strong earthquakes in the Earth’s crust. Geodynamics & Tectonophysics, 2(4): 378–415. (In Russ.). https://doi.org/10.5800/GT-2011-2-4-0051

38. Hayakawa M., Molchanov O.A. (eds.) 2002. Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: Terra Scientific Publ., 477 p.

39. Hayakawa M., Molchanov O.A., Ondoh T., Kawai E. 1996. The precursory signature of the Kobe earthquake on VLF subionospheric signal. J. of Atmospheric Electricity, 16(3): 247–257.

40. Jones L.M., Han W., Hauksson E., Jin A., Zhang Y., Luo Z. 1984. Focal mechanisms and aftershock locations of the Songpan earthquakes of August 1976 in Sichuan, China. Geophysical Research Letters, 89(B9): 7697–7707. https://doi.org/10.1029/jb089ib09p07697

41. Kato Y., Utashiro Sh. 1949. On the changes of the terrestrial magnetic field accompanying the great Nankaido earthquake of 1946. Science Reports of Tohoku University, Japan. Ser. 5, 1: 40.

42. Keylis-Borok V.I., Malinovskaya L.N. 1966. [On one pattern in strong earthquake occurrence]. In: [Seismological research methods ]. Moscow: Nauka, p. 88–97. (In Russ.).

43. Kissin I.G. 1997. Middle and short-term precursors of earthquakes and their factors determining reliability. J. Earthquake Prediction Research, 6(3): 367–386.

44. Kissin I.G. 2013. On the system approach in the problem of forecasting the earthquakes. Izv, Physics of the Solid Earth, 49: 587–600. https://doi.org/10.1134/s1069351313040058

45. Knopoff L. 1996. Earthquake prediction: The scientific challenge. Proceedings of The National Academy of Science, 93(9): 3719–3720. https://doi.org/10.1073/pnas.93.9.3719

46. Kocharyan G.G. 2010. Fault zone as a nonlinear mechanical system. Fizicheskaya. Mezomekhanika, 13(Spec. Iss.): 5–17. (In Russ.). EDN: NQXHWN

47. Kocharyan G.G. 2016. Geomechanics of faults. Ìoscow: GEOS, 424 p. (In Russ.).

48. Kocharyan G.G., Markov V.K., Markov D.V., Pernik L.M. 2011. Experimental research on deformation mechanisms of low-strength thin layers of geomaterials. Fizicheskaya. Mezomekhanika, 14(6): 63–70. (In Russ.).

49. Koronovskii N.V., Naimark A.A. 2012. The unpredictability of earthquakes as the fundamental result of the nonlinearity of geodynamic systems. Moscow University Geology Bull., 67(6): 323–331. https://doi.org/10.3103/s0145875212060026

50. Koronovsky N.V., Zakharov V.S., Naimark A.A. 2019. The short-term forecast of earthquakes: reality, scientific perspective or the project-phantom? Moscow University Bull. Series 4. Geology, 3: 3–12. (In Russ.). https://doi.org/10.33623/0579-9406-2019-3-3-12

51. Kosobokov V.G. 2005. [Earthquake prediction and geodynamic processes. Pt 1. Earthquake prediction: fundamentals, realization, perspectives ]. Moscow: GEOS, 172 p. (Vychislitelnaya Seismologiya; 36). (In Russ.).

52. Kosobokov V.G., Rotvayn I.M. 1977. [Strong earthquake-prone areas recognition. VI. Magnitude M>7.0]. In: Raspoznavanie i spektral’nyy analiz v seysmologii [Recognition and spectral analysis in sesimology]. Moscow: Nauka, p. 3–18.

53. Kossobokov V.G., Keilis-Borok V.I., Smith S.W. 1990. Localization of intermediate-term earthquake prediction. J. of Geophysical Research: Solid Earth, 95(12): 19763–19772. https://doi.org/10.1029/jb095ib12p19763

54. Kuksenko V.S., Manzhikov B.Ts., Tilegenov K., Shatemirov Zh.K., Emil’bekov B.E. 2003. Trigger effect of weak vibrations in solids (rocks). Physics of the Solid State, 45(12): 2287–2291. https://doi.org/10.1134/1.1635499

55. Larionov I.A, Marapulets Yu.V., Mishchenko M.A., Solodchuk A.A., Shcherbina A.O. 2017. Research of the acoustic emission of the near-surface sedimentary rocks in Kamchatka. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 1(3): 57–63. (In Russ.). https://doi.org/10.30730/2541-8912.2017.1.3.057-063

56. Levin B.V., Sasorova E.V., Kim Ch.U., Korovin M.E., Malashenko A.E., Savochkin P.V., Tikhonov I.N. 2007a. The Sakhalin earthquake on August 17(18), 2006, and the first realization of integrated forecast. Doklady Earth Sciences, 412: 117–121. https://doi.org/10.1134/s1028334x07010278

57. Levin B.V., Kim Choon Oon, Tikhonov I.N. 2007b. The Gornozavodsk earthquake of August 17(18), 2006, in the south of Sakhalin Island. Russian J. of Pacific Geology, 1(2): 194–199.

58. Lockner D.A., Beeler N.M. 1999. Premonitory slip and tidal triggering of earthquakes. J. of Geophysical Research: Solid Earth, 104(B9): 20133–20151. https://doi.org/10.1029/1999jb900205

59. Lyubushin A.A. 2011. Japan seismic catastrophe of 11 March, 2011: Long-term prediction by microseismic noise properties. Geofizicheskie protsessy i biosfera, 10(1): 9–35. (In Russ.). URL: https://alexeylyubushin.narod.ru/Long-term_prediction_of_JapanEQ_2011_by_microseisms_RUS.pdf

60. Makarov P.V., Smolin I.Yu., Stefanov Yu.P., Kuznetsov P.V., Trubitsyn A.A., Trubitsyna N.V., Voroshilov S.P., Voroshilov Ya.S. 2007. [Nonlinear mechanics of geomaterials and geological mediums ]. Novosibirsk: GEO, 235 p.

61. Malinetskiy G.G., Podlazov A.B. 1997. [The paradigm of self-organized criticality. Hierarchy of models and limits of predictability]. Izv. vuzov. Prikladnaya nelineynaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics, 5(5): 89–106. (In Russ.).

62. Mamadaliev Yu.A. 1964. [On the study of seismic regime parameters in time and space]. In: [Problems of regional seismicity in Central Asia ]. Frunze: Ilim, p. 93–104. (In Russ.).

63. Mervis J. 1990. Earthquake scientists hope that recent rumblings will lead to more funding. The Scientist, April 2. https://www.the-scientist.com/news/earthquake-scientists-hope-that-recent-rumblings-will-lead-to-more-fun­ding-61400

64. Meshcheryakov Yu.A. 1968. [Studying the contemporary movements of the Earth’s crust and the problem of earthquake forecasting]. In: [Contemporary movements of the Earth’s crust ]. Moscow: VINITI, 3, p. 44–62. (In Russ.).

65. Mil’kis M.R. 1986. [Meteorological precursors of strong earthquakes]. Izv. AN SSSR. Fizika Zemli, 3: 36–47. (In Russ.).

66. Mogi K. 1988. Earthquake prediction. Transl. from Engl. (Academic Press, Tokyo, 1985). Moscow: Mir, 382 p. (In Russ.).

67. Molchanov Î., Hayakawa M. 2007. Seismo-electromagnetics and related phenomena: History and latest results. Tokyo: Terra Scientific Publ., 432 p.

68. Morgunov V.A. 1999. [Realities of the earthquake forecast]. Fizika Zemli, 1: 79–91. (In Russ.).

69. Mubassarova V.A., Bogomolov L.M., Zakupin A.S., Panteleev I.A., Naymark O.B. 2014. Strain localization peculiarities and distribution of acoustic emission sources in rock samples tested by uniaxial compression and exposed to electric pulses. Geodynamics & Tectonophysics, 5(4): 919–938. (In Russ.). https://doi.org/10.5800/gt-2014-5-4-0163

70. Nikolaev V.A. 1994. [Spatio-temporal features of the strong earthquake relationship with tidal phases]. In: Navedionnaia seismichnost’ [Induced seismicity]. Moscow: Nauka, 103–114. (In Russ.).

71. Osika D.G. 1981. [Fluid regime of seismically active regions]. Moscow: Nauka, 201 p.

72. Panteleev I.A., Naimark O.B. 2014. Modern trends in mechanics of tectonic earthquakes. Perm Federal Research Center J., 3: 44–62. (In Russ.). EDN: TDURFP

73. Parovyshny V.A., Senachin V.N., Veselov O.V., Kochergin E.V. 2015. Temporal variations in geophysical fields and earthquake forecasting issues. Geodynamics & Tectonophysics, 6(1): 63–76. (In Russ.). http://dx.doi.org/10.5800/GT-2015-6-1-0172

74. Pevnev A.K. 2015. Earthquake forecasting is possible. (On the place of geodetic research in solving the problem of earthquake forecasting). Pt 1. Grigory A. Gamburtsev and possibility of earthquake prediction. Prostranstvo i Vremya = Space and Time, 4(22): 195–201. (In Russ.).

75. Pevnev A.K. 2016. Earthquake forecasting is possible. (On the place of geodetic research in solving the problem of earthquake forecasting). Pt 2. Back to Grigory A. Gamburtsev’s theory: Deformation model for preparation of crustal earthquake source. Prostranstvo i Vremya = Space and Time, 1–2(23–24): 227–238. (In Russ.). URL: https://space-time.ru/space-time/article/view/2226-7271provr_st1_2-23_24.2016.91

76. Raleigh C.B., Bennett G., Craig H., Hanks T., Molnar P., Nur A., Savage J., Scholz C., Turner R., Wu F. 1977. Prediction of the Haicheng earthquake. Eos, Transactions American Geophysical Union, 72: 236–272. https://doi.org/10.1029/eo058i005p00236

77. Rebetskiy Yu.L. 2003. Development of the method of cataclastic analysis of shear fractures for tectonic stresses estimation. Doklady Earth Sciences, 388(1): 72–76.
https://www.researchgate.net/publication/289231101_Development_of_the_method_of_cataclastic_analysis_of_shear_fractures_for_tectonic_stress_estimation

78. Rebetskiy Yu.L. 2007a. Problems of earthquake prediction theory. Analysis of fundamentals from the perspective of a deterministic approach. Geofizicheskiy zhurnal, 29(4): 92–110.

79. Rebetskiy Yu.L. 2007b. Tectonic stresses and strength of rock massifs. Moscow: Akademkniga, 406 p.

80. Rebetskiy Yu.L. 2008. [Current state of earthquake prediction theory. Estimation results of natural stresses and new earthquake source model]. In: Problemy tektonofiziki: K sorokaletiyu sozdaniya M.V. Gzovskim laboratorii tektonofi­ziki v IFZ RAN. Moscow: IFZ RAN, p. 359–395. (In Russ.).

81. Rebetsky Yu.L. 2021. Concerning the theory of LURR based deterministic earthquake prediction. Geosistemy pe­rehodnykh zon = Geosystems of Transition Zones, 5(3): 192–222. (In Russ. & Engl.). https://doi.org/10.30730/gtrz.2021.5.3.192-208.208-222

82. Reid H.F. (ed.) 1910. The California earthquake of April 18 1906. Vol. 2. The mechanisms of the earthquake. Washington: Carnegie Inst. Wash.

83. Rikitake T. 1966. A five-year plan for earthquake prediction research in Japan. Tectonophysics, 3(1): 1–15. https://doi.org/10.1016/0040-1951(66)90021-7

84. Rikitake T. 1979. [Earthquake prediction ]. Moscow: Mir, 388 p. (In Russ.).

85. Rodkin M.V., Rundkvist D.V. 2017. Geofluid geodynamics. Application to seismology, tectonics, ore and oil genesis processes. Dolgoprudny: Intellekt, 288 p. (In Russ.).

86. Roeloffs E., Langbein J. 1994. The earthquake prediction experiment at Parkfield, California. Reviews of Geophysics, 32(3): 315–335. https://doi.org/10.1029/94rg01114

87. Rogozhin E.A., Ioganson L.I., Zav’yalov A.D. et al. 2011. [Potential seismic sources and seismological earthquake precursors are the basis of a real seismic forecast ]. Moscow: Svetoch Plyus, 368 p. (In Russ.). EDN: THIGTP

88. Rozhnoi A., Solovieva M., Molchanov O., Schwingen­schuh K., Boudjada M., Biagi P.F., Maggipinto T., Castellana L., Ermini A., Hayakawa M. 2009. Anomalies in VLF radio signals prior the Abruzzo earthquake (M = 6,3) on 6 April 2009. Natural Hazard and Earth System Sciences, 9: 1727–1732.

89. Ruzhich V.V. 1996. [On the mid-term earthquake forecast in Pribaikal’e]. In: [Geophysical studies in the Eastern Siberia at the turn of XXI century]. Novosibirsk: Nauka, p. 143–147. (In Russ.).

90. Sadovskiy M.A. 1986. [Self-similarity of geodynamic processes]. Vestnik AN SSSR, 8: 3–11. (In Russ.).

91. Sadovskiy M.A., Pisarenko V.F. 1991. Seysmicheskiy protsess v blokovoy srede [Seismic process in the block medium]. Moscow: Nauka, 96 p. (In Russ.).

92. Sadovskiy M.A., Mirzoev K.M., Negmatullaev S.Kh., Salomov N.G. 1981. [Effect of mechanical vibrations on the character of plastic deformations of materials]. Fizika Zemli, 6: 32–42. (In Russ.).

93. Saltykov V.A. 2016. Prilivnye effekty v vysokochastotnykh seysmicheskikh shumakh v seysmicheskom regione [Tidal effects in the high-frequency seismic noises in seismic region]: [extended abstract of dr. sci. (phys. and math.) dissertation]. Moscow, MGU im. M.V. Lomonosova, 48 p. (In Russ.).

94. Scholz C. 1997. What ever happened to earthquake prediction? Reprint. with permission from Geotimes, vol. 17, March 1997. Copyright the American Geological Institute, 1997. URL: https://earthquake.usgs.gov/learn/parkfield/scholz.html (accessed 04.09.2022).

95. Scholz C. 2002. The mechanics of earthquakes and faulting. Cambridge: Cambridge Univ. Press, 496 p.

96. Seminskiy K.Zh. 2009. [Tectonophysical analysis of the internal structure of the fault zones]. In: Modern Tectonophysics. Methods and Results: Materialy pervoy molodezhnoy shkoly-seminara [Proceedings of the First Youth School-Seminar]. Moscow: IFZ RAN, 1, p. 258–276. (In Russ.).

97. Shchekotov A.Yu., Chebrov V.N., Berseneva N.Yu. 2015. [Electromagnetic precursors of the Olyutor and Sea of Okhotsk earthquakes]. In: Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii: Trudy 5 nauch.-tekhn. konf.: k 100-letiyu organizatsii instrumental’nykh seysmologicheskikh nablyudeniy na Kamchatke, Petropavlovsk-Kamchatskiy, 27 sent. – 3 okt. 2015 goda [Problems of the complex geophysical monito­ring of the Russian Far East: Proceedings of the 5th Science and Technology Conference: on the centenary of arrangement of seismological observations in Kamchatka]. Petropavlovsk-Kamchatskiy: GS RAN, p. 311–315. (In Russ.).

98. Shebalin P. 2006. Increased correlation range of seismicity before large events manifested by earthquake chains. Tectonophysics, 424(3-4): 335–349. http://dx.doi.org/10.1016/j.tecto.2006.03.040

99. Shebalin P., Keilis-Borok V., Zaliapin I., Uyeda S., Nagao T., Tsybin N. 2004. Advance short-term prediction of the large Tokachi-oki earthquake, September 25, 2003, M=8.1. A case history. Earth, Planets and Space, 56: 715–724. https://doi.org/10.1186/bf03353080

100. Sherman S.I., Seminskiy K.Zh., Cheremnykh A.V. 1999. Destruction zones and fault-block structures of Asia. Tikhookeanskaya geologiya = Geology of the Pacific Ocean, 18(2): 41–53. (In Russ.).

101. Sidorin A.Ya. 1992. [Earthquake precursors ]. Moscow: Nauka, 192 p. (In Russ.).

102. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181–202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237

103. Sim L.A., Kamenev P.A., Bogomolov L.M. 2020. New data on the latest stress state of the earth’s crust on Sakhalin Island (based on structural and geomorphological indicators of tectonic stress). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 372–383. (In Russ.). https://doi.org/10.30730/gtrz.2020.4.4.372-383

104. Simbireva I.G., Lukk A.A., Nersesov I.L. 1974. [Change in the dynamic parameters of weak earthquake sources in the Garmskii district related to strong earthquake occurrence]. In: [Regional studies of the seismic regime ]. Kishinev: Shtiintsa, p. 138–153. (In Russ.).

105. Smirnova M.N. 1971. [On the influence of weak earthquakes on the regime of Pyatigorsk mineral springs]. Izv. AN SSSR. Fizika Zemli, 7: 80–83. (In Russ.).

106. Snieder R., van Eck T. & van Eck T. 1997. Earthquake prediction: a political problem? Geologische Rundschau, 86: 446–463. https://doi.org/10.1007/s005310050153

107. Sobolev G.A. 1993. Osnovy prognoza zemletryaseniy [Fundamentals of the earthquake prediction ]. Moscow: Nauka, 313 p. (In Russ.). EDN: TGSIGH

108. Sobolev G.A. 1999. [Preparation stages of Kamchatka strong earthquakes]. Volcanology and Seismology, 4/5: 63–72. (In Russ.). EDN: RZYUFX

109. Sobolev G.A. (ed.) 2000. [Natural hazards of Russia. Seismic hazards ]. Moscow: Kruk, 296 p. (In Russ.).

110. Sobolev G.A. 2003. [The prospects of earthquake forecasting]. In: Problemy geofiziki XXI veka [Problems of geophysics of the XXI century]. Moscow: Nauka, p. 158–178. (In Russ.).

111. Sobolev G.A. 2011a. Kontseptsiya predskazuemosti zemletryaseniy na osnove dinamiki seysmichnosti pri triggernom vozdeystvii [The concept of predictability of the earthquakes based on the seismic dynamics under the trigger effect]. Moscow: IFZ RAN, 56 p. (In Russ.).

112. Sobolev G.A. 2011b. Seismicity dynamics and earthquake predictability. Natural Hazards and Earth System Sciences, 11: 445–458. https://doi.org/10.5194/nhess-11-445-2011

113. Sobolev G.A., Morozov V.N. 1970. [Local disturbances in the electric field on Kamchatka and their relation to earthquakes]. In: Fizicheskie osnovaniya poiskov metodov prognoza zemletryaseniy [Physical foundations for searching the methods of earthquake forecasting]. Moscow: Nauka, p. 110–121.

114. Sobolev G.A., Ponomarev A.V. 2003. Fizika zemletryaseniy i predvestniki [Physics of the earthquakes and the precursors]. Moscow: Nauka, 270 p. (In Russ.).

115. Sobolev G.A., Tyupkin Yu.S. 1996. Low-seismicity precursors of large earthquakes in Kamchatka. Volcanology and Seismology, 18(4): 433–446.

116. Sobolev G.A., Tyupkin Yu.S. 1999. Precursory phases, seismicity precursors, and earthquake prediction in Kamchatka. Volcanology and Seismology, 20(6): 615–627.

117. Sobolev G.A., Chelidze T.L., Zavyalov A.D., Slavina L.B., Nikoladze V.E. 1991. Maps of expected earthquakes based on a combination of parameters. Tectonophysics, 193(4): 255–265. DOI:10.1016/0040-1951(91)90335-P

118. Sobolev G.A., Ponomarev A.V., Kol’tsov A.V. 1995. Excitation of the oscillations in the seismic source model. Izv. Ross. Akad. Nauk, Fizika Zemli, 12: 72–78. (In Russ.). EDN: QFFFDE

119. Sycheva N.A., Bogomolov L.M. 2016. Patterns of stress drop in earthquakes of the Northern Tien Shan. Russian Geology and Geophysics, 57(11): 1635–1645. https://doi.org/10.1016/j.rgg.2016.10.009

120. Sycheva N.A., Bogomolov L.M. 2020. On the stress drop in North Eurasia earthquakes source-sites versus specific seismic energy. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 417–446. (In Russ.&Engl.). https://doi.org/10.30730/gtrz.2020.4.4.393-416.417-446

121. Sycheva N.A., Bogomolov L.M., Kuzikov S.I. 2020. Computational technologies in seismological research (on the example of KNET, Northern Tien Shan). Yuzhno-Sakhalinsk: IMGiG DVO RAN, 358 p. https://dx.doi.org/10.30730/978-5-6040621-6-6.2020-2

122. Takagi A., Isibasi K., Suyekhiro S., Usami T., Matsuda T., Asada T., Yosii T., Vakita Kh., Sato Kh., Midzutani Kh. 1984. Metody prognoza zemletryaseniy. Ikh primenenie v Yaponii [Earthquake prediction techniques. Their application in Japan]. Moscow: Nedra, 287 p.

123. Tataurova À.A. 2015. Stress and strain fields based on data on crustal earthquake mechanisms in Sakhalin Island. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences, 3: 93–101. (In Russ.).

124. Tikhonov I.N. 2001. [On a long-term cyclicity of the strongest (M > 7.5) earthquakes in the area of the South Kuril Islands]. In: Dinamika ochagovykh zon i prognozirovanie sil’nykh zemletryaseniy severo-zapada Tikhogo okeana [Dynamics of the focal zones and the strongest earthquake prediction]. Yuzhno-Sakhalinsk, 1, p. 23–33. (In Russ.).

125. Tikhonov I.N. 2002. A law of recurrence of the time spans between sequential seismic events. Doklady Earth Sciences, 387(2): 250–252. (In Russ.). EDN: PSYRMC

126. Tikhonov I.N. 2006. [Methods of analysis of earthquake catalogues for the purposes of mid- and short-term forecasts of strong seismic events ]. Vladivostok; Yuzhno-Sakhalinsk: IMGiG DVO RAN, 214 p. (In Russ.).

127. Tikhonov I.N. 2009. Prediction of strong earthquake within the southwestern shelf of Sakhalin Island and its realization during the August 2, 2007, Nevelsk earthquake. Russian J. of Pacific Geology, 3(5): 429–436. https://doi.org/10.1134/s1819714009050042

128. Tikhonov I.N., Kim Ch.U. 2008. A successful prediction of the Nevel’sk August 2, 2007, earthquake (MLH=6.2) in southern Sakhalin Island. Doklady Earth Sciences, 420(1): 704–708. https://doi.org/10.1134/s1028334x08040417

129. Tikhonov I.N., Kim Ch.U. 2010. Confirmed prediction of the 2 August 2007 MW 6.2 Nevelsk earthquake (Sakhalin Island, Russia). Tectonophysics, 485(1-4): 85–93. https://doi.org/10.1016/j.tecto.2009.12.002

130. Tikhonov I.N., Rodkin M.V. 2012. The current state of art in earthquake prediction, typical precursors, and experience in earthquake forecasting at Sakhalin Island and surrounding areas. In: Earthquake Research and Analysis – Statistical Studies, Observations and Planning, Ch. 5, p. 43–78. https://doi.org/10.5772/28689

131. Tikhonov I.N., Vasilenko N.F., Levin Yu.N., Prytkov A.S., Frolov D.I. 2008. [The 2006–2007 Simushir earthquakes as a new page in the history of Kuril seismically active zone]. In: [Geophysical monitoring and problems of seismic safety of the Russian Far East ]: Trudy regional. nauch.-tekhn. konf. Petropavlovsk-Kamchatskiy, 1, p. 215–219. (In Russ.).

132. Tikhonov I.N., Mikhaylov V.I., Malyshev A.I. 2017. Modeling the southern Sakhalin earthquake sequences prece­ding strong shocks for short-term prediction of their origin time. Russian J. of Pacific Geology, 11(1): 1–10. https://doi.org/10.1134/s1819714017010092

133. Torunbalchi N. 2004. Seismic isolation and energy dissipa­ting systems in earthquake resistant design. In: 13th World Conf. on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6. Paper no. 3273. URL: https://www.iitk.ac.in/nicee/wcee/article/13_3273.pdf

134. Ulomov V.I. 1971. Attention! Earthquake! Tashkent: Uzbekistan, 160 p. (In Russ.).

135. Ulomov V.I., Mavashev B.Z. 1971. [Precursors of the Tashkent earthquake]. In: Tashkentskoe zemletryasenie 26 aprelya 1966 goda [The April 26, 1966 Tashkent earthquake]. Tashkent: FAN Uzb. SSR, p. 188–192. (In Russ.).

136. Vorob’ev A.A., Samokhvalov M.A., Gorelkin A.F. et al. 1976. [Anomalous changes in the natural electromagnetic field intensity in the area of Tashkent prior the earthquake]. Uzbekskiy geologicheskiy zhurnal, 2: 9–11. (In Russ.).

137. Voytov G.I., Dobrovol’skiy I.P. 1994. [Chemical and isotropic-carbohydrate instability of natural gas flows in the seismically active regions]. Fizika Zemli, 3: 20–31. (In Russ.).

138. Wang K., Chen Q-F., Sun S., Wang A. 2006. Predicting the 1975 Haicheng Earthquake. Bull. of the Seismological Society of America, 96(3): 757–795. https://doi.org/10.1785/0120050191

139. Wyss M. et al. 1997. Cannot earthquakes be predicted? Science, 278(5337): 487–490. https://doi.org/10.1126/science.278.5337.487
https://scholar.google.com/scholar_lookup?&title=Cannot%20earthquakes%20be%20predicted%3F&journal=Science&volume=278&publication_year=1997&author=Aceves%2CRL&author=Park%2CSK (accessed 05.09/2022)

140. Yin X., Yin C. 1991. The precursor of instability for nonlinear system and its application to earthquake prediction. Science in China, 34: 977–986.

141. Yin X.C. et al. 1995. A new approach to earthquake prediction: The Load/Unload Response Ratio (LURR) theory. Pure and Applied Geophysics, 145(3/4): 701–715. https://doi.org/10.1007/bf00879596

142. Yin X.C., Wang Y.C., Peng K.Y., Bai Y.L., Wang H.T., Yin X.F. 2001. Development of a new approach to Earthquake Prediction: The Load/Unload Response Ratio (LURR) theory. Pure and Applied Geophysics, 157: 2365–2383. https://doi.org/10.1007/978-3-0348-7695-7_29

143. Yunga S.L. 1996. Retrospective analysis of temporal variations in seismic moment tensors in the Shikotan earthquake zone. In: Federal system of seismological observations and earthquake prediction. Information and Analysis Bulletin, 2(2): 24–40. (In Russ.).

144. Yunga S.L. 1999. Comparative analysis of seismotectonic deformations in regions of active geodynamic regimes. In: Geophysics at the Century Boundary: Selected papers of scientists of the Institute of Physics of the Earth, Russian Academy of Sciences. Moscow: OIFZ RAN, p. 253–264. (In Russ.).

145. Zakharova A.I., Rogozhin E.A. 2000. [Strong earthquakes of the northwest Pacific margin and their deep-focus precursors]. Vestnik OGGG RAN, 2-1(12): 82–94. (In Russ.).

146. Zakharova A.I., Rogozhin E.A. 2001. Deep-focus precursors of strong earthquakes. Doklady Earth Sciences, 381A(9): 1122–1123.

147. Zakharova A.I., Rogozhin E.A. 2004. [Spatial-temporal ratios of strong earthquakes sources and their deep-focus precursors]. In: [Geophysics researches (by the 75th anniversary of the Schmidt Institute of physics of the Earth)]. Moscow: OIFZ RAN, p. 13–19. (In Russ.).

148. Zakupin A.S. 2016. Program complex for the analysis of instability of seismic process. Geoinformatika, 1: 34–43. (In Russ.).

149. Zakupin A.S., Semenova E.P. 2018. Study of the process of preparation of strong earthquakes (Mw > 5) on Sakhalin using the LURR method. Vestnik KRAUNTs. Fiz.-mat. nauki = Bull. KRASEC. Physical and Mathematical Sciences, 5: 83–98. (In Russ.). https://doi.org/10.18454/2079-6641-2018-25-5-83-98

150. Zakupin A.S., Levin Yu.N., Boginskaya N.V., Zherdeva O.A. 2018. Development of medium-term prediction methods: A case study of the August 14, 2016 Onor (M = 5.8) earthquake on Sakhalin. Russian Geology and Geophysics, 59(11): 1526–1532. https://doi.org/10.1016/j.rgg.2018.10.012

151. Zakupin A.S., Bogomolov L.M., Boginskaya N.V. 2020. Application of methods of analysis of seismic sequences SDP and LURR for earthquake. Geophysical Processes and Biosphere, 19(1): 66–78. (In Russ.). https://doi.org/10.21455/GPB2020.1-4

152. Zav’yalov A.D. 1986. [Concentration criterion of seismogenic faults as a precursor of strong earthquakes]. Volcanology and Seismology, 3: 58–71.

153. Zav’yalov A.D. 2006. [Middle-term earthquake prediction: fundamentals, method, realization ]. Moscow: Nauka, 242 p. (In Russ.).

154. Zubkov S.I. 2002. [Earthquake precursors ]. Moscow: IFZ RAN, 140 p. (In Russ.).