Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, volume 6, № 2, pp. 114–123

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.2.114-123, https://www.elibrary.ru/wmvfjq


Features of seishe initiation in the water area near Poronaisk (Sakhalin Island)
Dmitry P. Kovalev, https://orcid.org/0000-0002-5184-2350, d.kovalev@imgg.ru
Peter D. Kovalev, https://orcid.org/0000-0002-7509-4107, p.kovalev@imgg.ru
Alexander S. Borisov, https://orcid.org/0000-0002-9026-4258, a.borisov@imgg.ru
Vitalii S. Zarochintsev, https://orcid.org/0000-0002-4015-9441, zarochintsev@imgg.ru
Konstantin V. Kirillov, https://orcid.org/0000-0002-0822-3060, k.kirillov@imgg.ru

Institute of Marine Geology and Geophysics of the Far Eastern Branch of RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. The results of studying potential sources of seiche excitation energy in the water area near Poronaisk (Sakhalin Island) using natural measurement data in 2008–2009 are presented. Time series data with a duration of about three months were collected by two autonomous sea-level recorders at one-second sample rate. Spectral analyses of time series made possible to conclude that wave processes with periods from 2 to 7 hours can be classified as seiches. Possible seiche periods calculated by numerical methods are very close to the periods of seiches detected in the Terpeniya Bay. The calculated envelopes of wave processes showed a good coincidence of the peaks of seiches with a period of 7 hours and wind waves, which confirms the transfer of energy from atmospheric disturbances to the seven-hour seiche. Seiche period of 3.5 hours is shown to be equal to the period of tidal harmonic 4M?7. Thus, the resonance pass of energy transmission from tidal harmonic to seiche was revealed taking into account high for marine waters q-factor equal to 11.9 at the period of 3.5 hours. The highest seiches at a period of 2.7 hours are observed on the 6-8 day after maximum of daily tide with a period of 24.68 hours, which is close to the period of lunar tide harmonic M1. The analyses of excitation factors of seiches with 2-hour period showed that the excitation energy, or at least a part of it, is provided by atmospheric disturbances. Thus, the increasing of seiche height occurs during the winds of southern directions in the Terpeniya Bay.


Keywords:
seishes, atmospheric disturbances, tidal harmonics, q-factor of waterbody, spectral density

For citation: Kovalev D.P., Kovalev P.D., Borisov A.S., Zarochintsev V.S., Kirillov K.V. Features of seishe initiation in the water area near Poronaisk (Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 2, pp. 114–123. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2022.6.2.114-123, https://www.elibrary.ru/wmvfjq

Для цитирования: Ковалев Д.П., Ковалев П.Д., Борисов А.С., Зарочинцев В.С., Кириллов К.В. Особенности возбуждения сейш в акватории вблизи Поронайска (о. Сахалин). Геосистемы переходных зон, 2022, т. 6, № 2, с. 114–123.
https://doi.org/10.30730/gtrz.2022.6.2.114-123, https://www.elibrary.ru/wmvfjq


References

1. Kovalev D.P., Kovalev P.D. 2020. [Peculiarities of the wave regime in Terpeniya Bay]. Ekologicheskie sistemy i pribory = Ecological Systems and Devices, 11: 20–28. (In Russ.). https://doi.org/10.25791/esip.11.2020.1190

2. Rabinovich А.B. 1993. Dlinnye gravitatsionnye volny v okeane: zakhvat, rezonans, izluchenie [Long gravitational waves in the ocean: entrapment, resonance, emission] . Leningrad: Gidrometeoizdat, 325 p. (In Russ.).

3. Wilson B.W. 1972. Seiches. Advances in Hydroscience, 8: 1–94. https://doi.org/10.1016/b978-0-12-021808-0.50006-1

4. Korgen B.J. 1995. Seiches, transient standing-wave oscillations in water bodies can create hazards to navigation and unexpected changes in water conditions. American Scientist, 83: 330–341.

5. De Jong M. 2004. Origin and prediction of seiches in Rotterdam harbor basins. The Netherlands: Partners Ipskamp Beheer B.V., 119 p.

6. Rabinovich A.B. 2009. Seiches and harbor oscillations. In: Handbook of Coastal and Ocean Engineering. Singapore: World scientific publ. comp., p. 193–236. https://doi.org/10.1142/9789812819307_0009

7. Defant A. 1961. Physical oceanography. Vol. 2. New York: Pergamon, 598 p. https://doi.org/10.1126/science.134.3488.1412

8. Rabinovich A.B., Monserrat S. 1996. Meteorological tsunamis near the Balearic and Kuril Islands: descriptive and statistical analysis. Natural Hazards, 13(1): 55–90. https://doi.org/10.1007/bf00156506

9. Monserrat S., Vilibi?c I., Rabinovich A.B. 2006. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6: 1035–1051.

10. Hibiya T., Kajiura K. 1982. Origin of Abiki phenomena (a kind of seiches) in Nagasaki Bay. J. of Oceanography (of the Oceanographic Society of Japan), 38(3): 172–182. https://doi.org/10.1007/bf02110288

11. De Jong M.P.C., Holthuijsen L.H., Battjes J.A. 2003. Generation of seiches by cold fronts over the southern North Sea. J. of Geophysical Research Atmospheres, 108(4): 3117. https://doi.org/10.1029/2002jc001422

12. Giese G.S., Chapman D.C., Black P.G., Fornshell J.A. 1990. Causation of large-amplitude coastal seiches in the Caribbean coast of Puerto Rico. J. of Physical Oceanography, 20(9): 1449–1458. https://doi.org/10.1175/1520-0485(1990)020<1449:colacs>2.0.co;2

13. Giese G.S., Chapman D.C. 1993. Coastal seiches. Oceanus, 36(1): 38–46.

14. Plekhanov F.А., Kovalev D.P. 2016. [Program for complex processing and analysis of time-series of sea level data based on the proprietary algorithms]. Geoinformatika, 1: 44–53. (In Russ.).

15. Kovalev D.P. 2018. Kyma: patent RU № 2018618773. Appl. 20.03.2018; publ. 19.07.2018. (In Russ.).

16. Kovalev P.D., Shevchenko G.V. 2008. Eksperimental’nye issledovaniya dlinnovolnovykh protsessov na severo-zapadnom shel’fe Tikhogo okeana [Experimental studies of longwave processes on the Pacific northwest shelf]. Vladivostok: Dal’nauka, 215 p. (In Russ.).

17. Maniliuk Yu.V., Cherkesov L.V. 2016. Investigation of free liquid oscillations in a bounded basin representing an approximate model of the Sea of Azov. Morskoy Gidrofizicheskiy Zhurnal = Physical Oceanography, 2: 16–26. https://doi.org/10.22449/1573-160x-2016-2-14-23

18. Sudol’skij А.S. 1991. Dinamicheskie yavleniya v vodoemakh [Dynamic phenomena in water bodies]. Leningrad: Gidrometeoizdat, 263 p. (In Russ.).

19. Rajkhlen F. 1970. [Harbour resonance]. In: Gidrodinamika beregovoi zony i estuariev: transl. from Engl. Leningrad: Gidrometeoizdat, p. 114–166.

20. Arsen’eva N.M., Davydov L.K., Dubrovina L.N., Konkina N.G. 1963. [ Seiches on the lakes of the USSR]. Leningrad: Izd-vo LGU, 184 p. (In Russ.).

21. Gonorovskii I.S. 1967. [ Radio engineering circuits and signals]. Moscow: Sovetskoye radio, vol. 1, 439 p. (In Russ.).

22. Morse Ph.M., Feshbakh G. 1958. Methods of theoretical physics: transl. from Engl. Moscow: Izd-vo inostr. lit., vol. 1, 930 p. URL: https://www.amazon.com/Methods-Theoretical-Physics-International-Applied/dp/007043316X (accessed 30.05.2022).

23. Parker B.B. 2007. Tidal analysis and prediction. Maryland: Silver Spring, 378 p.

24. Zernov N.V., Karpov V.G. 1972. [ Theory of radio engineering circuits]. Leningrad: Energiya, 816 p. (In Russ.).

25. Kovalev P.D., Kovalev D.P. 2013. Seiche vibrations features in bays and inlets of Far East: Primorye, Sakhalin, Southern Kuril Islands. Vestn. Tambovskogo universiteta, Ser. Estestvennye i tekhnicheskie nauki, 18(4): 1377–1382. (In Russ.).