Abstract PDF ENG | Ðåçþìå PDF RUS | Full text PDF ENG |
Abstract. The Late Holocene phases of aeolian processes have been reconstructed on the basis of dune fields construction. The palaeoenvironmental studies were targeted to following problems: 1) to determine the periods of higher and lower activity of aeolian processes; 2) to establish the age of aeolian deposits and buried soils; 3) to retrace the development of coastal landscapes. The age was determined by radiocarbon dating of paleosols and tephrostratigraphy. The correlation of tephra was performed using data on the volcanic glass chemical composition. The dunes formed during the cooling accompanied by a minor regression. Six buried soils found in the dunes reflect stabilization and overgrowing of dune fields. The longest period of dune stabilization began after a cold event 2800–2600 cal yr BP and lasted until the Little Ice Age. Paleosols contain the tephra of large volcanic eruptions on Urup (Kolokol volcano), Simushir (Zavaritsky volcano) and Iturup (tephra). Pollen analysis allows us to retrace the development of coastal landscapes. Thickets of dwarf pine developed during cooling, birch forests spread in the Medieval Warm Period, and herb meadows were widely represented on the dunes. Human impact on the coastal palaeovegetation was found. Aeolian sedimentation was high during the Little Ice Age. One of the factors of dune reactivation during the Little Ice Age was increased winter storminess associated with the East Asian winter monsoon. Evidence of active cyclogenesis is the increasing proportion of allochthonous pollen. The modern reactivation of aeolian processes is associated with human activity and storm erosion of dunes.
Keywords:
aeolian deposits, paleosol, minor regressions, tephra, coastal landscape, human impact
For citation: Razjigaeva N.G., Ganzey L.A., Arslanov Kh.A., Pshenichnikova N.F. Coastal dunes of Urup Island (Kuril Islands, North-Western Pacific): palaeoclimatic and environmental archive. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 2, pp. 100–113. (In Engl., abstr. in Russ.).
https://doi.org/10.30730/gtrz.2022.6.2.100-113, https://www.elibrary.ru/afcofs
Äëÿ öèòèðîâàíèÿ: Ðàçæèãàåâà Í.Ã., Ãàíçåé Ë.À., Àðñëàíîâ Õ.À., Ïøåíè÷íèêîâà Í.Ô. Áåðåãîâûå äþíû îñòðîâà Óðóï (Êóðèëüñêèå îñòðîâà, ñåâåðî-çàïàäíàÿ Ïàöèôèêà): àðõèâ èçìåíåíèé ïàëåîêëèìàòà è ïðèðîäíîé ñðåäû. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 2, ñ. 100–113. (In Engl., abstr. in Russ.).
https://doi.org/10.30730/gtrz.2022.6.2.100-113, https://www.elibrary.ru/afcofs
References
1. Endo K. 1986. Coastal sand dunes in Japan. Proc. of the Inst. of Natural Sciences, College of Humanities and Sciences, Nihon University, Earth Sciences, 21: 37–54.
2. Ruz M.-H., Hesp P.A. 2014. Geomorphology of high-latitude coastal dunes: a review. In: Martini I.P. & Wanless H.R. (eds) Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences. London: Geological Society, Spec. Publ., 388: 199–212. https://doi.org/10.1144/SP388.17
3. Tamura T., Kodama Y., Bateman M.D., Saitoh Y., Yamaguchi N., Matsumoto D. 2016. Late Holocene aeolian sedimentation in the Tottori coastal dune field, Japan Sea, affected by the East Asian winter monsoon. Quaternary International, 397: 147–158. https://doi.org/10.1016/j.quaint.2015.09.062
4. Vries de S., Arens S.M., Schipper de M.A., Ranasinghe R. 2014. Aeolian sediment transport on a beach with a varying sediment supply. Aeolian Research, 15: 235–244. https://doi.org/10.1016/j.aeolia.2014.08.001
5. Korotkiy A.M., Razzhigaeva N.G., Mokhova L.M., Ganzey L.A., Grebennikova T.A., Bazarova V.B. 1996. Coastal dunes as indicator of periods of global climatic deterioration (Kunashiri Island, Kuriles). Geology of Pacific Ocean, 13: 73–84.
6. Razzhigaeva N.G., Ganzei L.A. 2005. Coastal dune evolution under sea level changes. Oceanology, 45(1): 140–149.
7. Minyuk P.S., Subbotnikova T.V., Lozhkin A.V., Anderson P.M. 2013. Rock magnetic properties of the lake Pernatoe sediments (Paramushir Island) as an indicator of the changes in sedimentation conditions. Izvestiya. Physics of the Solid Earth, 49(1): 120–29. https://doi.org/10.1134/S1069351313010096
8. Afanas’yev V.V. 2019. A new type of aeolian morphogenesis on volcanic shores (Iturup Island, Great Kuril Ridge). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(4): 423–427. (In Russ.). https://doi.org/10.30730/2541-8912.2019.3.4.423-427
9. Karpachevskii L.O., Alyabin I.O., Zakharikhina L.V., Makeev A.O., Marechek M.S., Radyukin A.Yu., Shoba S.A., Targul’yan V.O. 2009. Soils of Kamchatka. Moscow: GEOS, 224 p. (In Russ.).
10. Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I. 2004. Classification and Identification of Russia’s Soils. Smolensk: Oikumena, 342 p. (In Russ.).
11. Pokrovskaya I.M. 1966. Methods of paleopollen studies. In: Pokrovskaya I.M. (ed.) Paleopalynology. Leningrad: Nedra, 32–61. (In Russ.).
12. Ramsey B.C. 2021. OxCal 4.4. 2021. http://c14.arch.ox.ac.uk/oxcal (accessed 12.01.2022).
13. Reimer P. 2020. Letter from the Guest Editor. Radiocarbon, 62(4): V–Vii. http://dx.doi.org/10.1017/RDC.2020.99
14. Liksakova N.S., Glazkova E.A., Kuzmina E.Yu. 2021. To the vegetation of Urup Island (the Kuriles). Botanicheskii J., 106 (8): 731–55. (In Russ.). https://doi.org/10.31857/S0006813621080068
15. Nakagawa M., Ishizuka Y., Hasegawa T., Baba A., Kosugi A. 2008. Preliminary report on volcanological research of KBP 2007–2008 Cruise by Japanese Volcanology group. In: KBP Report. Seattle: Washington University, 54 p.
16. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Belyanina N.I., Mokhova L.M., Arslanov Kh.A., Chernov S.B. 2013. Holocene climatic changes and vegetation development in the Kuril Islands. Quaternary International, 290–291: 126–138. https://doi.org/10.1016/J.QUAINT.2012.06.034
17. Razjigaeva N.G., Ganzey L.A., Belyanina N.I., Grebennikova T.A., Arslanov Kh.A., Pshenichnikova N.F., Rybin A.V. 2013. Role climatic and volcanogenic factors in the formation of organogenic sediments and the development of landscape on Simushir Island (Central Kurils) in the Middle-Late Holocene. Russian J. of Pacific Geology, 7(3): 199–211. https://doi.org/10.1134/S1819714013030068
18. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Belyanina N.I., Ganzei K.S., Kaistrenko V.M., Arslanov Kh.A., Maksimov F.E., Rybin A.V. 2019. Multiproxy record of late Holocene climatic changes and natural hazards from paleolake deposits of Urup Island (Kuril Islands). J. Asian Earth Sci., 181: 103916. https://doi.org/10.1016/j.jseaes.2019.103916
19. Barkalov V.Yu. 2009. Flora of Kuril Islands. Vladivostok: Dalnauka, 468 p. (In Russ.).
20. Korotky A.M., Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Mokhova L.M., Bazarova V.B., Sulerzhitsky L.D., Lutaenko K.A. 2000. Middle and late-Holocene environments and vegetation history of Kunashir Island, Kurile Islands, northwestern Pacific. Holocene, 10(3): 311–331. https://doi.org/10.1191/095968300667552216
21. Wanner H., Solomina O., Grosjean M., Ritz S.P., Jetel M. 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews, 30: 3109–3123. https://doi.org/10.1016/j.quascirev.2011.07.010
22. Anderson P.M., Lozhkin A.V., Solomatkina T.B., Brown T.A. 2010. Paleoclimatic implications of glacial and postglacial refugia for Pinus pumila in Western Beringia. Quaternary Research, 73: 269–276. https://doi.org/10.1016/j.yqres.2009.09.008
23. Lozhkin A.V., Cherepanova M.V., Anderson P., Minyuk P., Finney B., Pakhomov A., Brown T., Korzun Ju., Tsigankova V. 2020. Late Holocene history of Tokotan Lake (Kurile Archipelago, Russian Far East): the use of lacustrine records for paleoclimatic reconstructions from geologically dynamic settings. Quaternary International, 553: 104–117. https://doi.org/10.1016/j.quaint.2020.05.023
24. Nazarova L., Razjigaeva N.G., Ganzey L.A., Makarova T.R., Lyaschevskaya M.S., Biskaborn B.K., Hoelzmann P., Golovatyuk L.V., Diekman B. 2022. The middle to Late Holocene environments on the Iturup Island (Kurils, North Western Pacific). Quaternary International, in press. https://doi.org/10.1016/j.quaint.2021.05.003
25. Razjigaeva N.G., Ganzey L.A., Grebennikova T.A., Degterev A.V., Ezhkin A.K., Rybin A.V., Arslanov Kh.A., Maksimov F.E., Petrov A.Yu. 2022. The record of environmental changes in lacustrine-swamp sequences within the mountain area of Iturup Island since the Late Glacial Period. Russian J. of Pacific Geology, 16(2): 116–130. https://doi.org/10.1134/S1819714022020087
26. Kawahata H., Ohshima H., Shimada C., Oba T. 2003. Terrestrial oceanic environmental change in the southern Okhotsk Sea during the Holocene. Quaternary International, 108: 67–76. https://doi.org/10.1016/S1040-6182(02)00195-7
27. Sakaguchi Y. 1983. Warm and cold stages in the past 7600 years in Japan and their global correlation. Bull. of the Department of Geography of the University of Tokyo, 15: 1–31.
28. Yasuda Y. 1995. Climatic changes and the development of Jomon Culture in Japan. In: Nature and Humankind in the Age of Environmental Crisis, in: Ito Sh., Yasada Y. (eds.) Proc. of the VIth International Symp. at the Intern. Research Center for Japanese Studies, 57–77.
29. Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Mokhova L.M., Bazarova V.B. 2004. The role of global and local factors in determining the middle to late Holocene environmental history of the South Kurile and Komandor Islands, northwestern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 209: 313–333. https://doi.org/10.1016/j.palaeo.2004.02.023
30. Anderson P.M., Minyuk P.S., Lozhkin A.V., Cherepanova M.V., Borkhodoev V., Finney B.A. 2015. Multiproxy record of Holocene environmental changes from the northern Kuril Islands (Russian Far East). J. of Paleolimnology, 54: 379–393. https://doi.org/10.1007/s10933-015-9858-y
31. Lozhkin A., Minyuk P., Cherepanova M., Anderson P., Finney B. 2017. Holocene environments of central Iturup Island, southern Kuril archipelago, Russian Far East. Quaternary Research, 88: 23–38. https://doi.org/10.1017/qua.2017.21
32. Fitzhugh B., Shubin V.O., Tezuka K., Ishizuka Y., Mandryk C.A.S. 2002. Archeology in the Kuril Islands: advances in the study of human paleobiogeography and Norwest Pacific Prehistory. Arctic Anthropology, 39(1–2): 69–94.
33. Razjigaeva N.G., Ganzey L.A., Bazarova V.B., Arslanov Kh.A., Grebennikova T.A., Mokhova L.M., Belyanina N.I., Lyaschevskaya M.S. 2019. Landscape response to the Medieval Warm Period in the South Russian Far East. Quaternary International, 519: 215–231. https://doi.org/10.1016/j.quaint.2018.12.006
34. Nazarova L.B., Razjigaeva N.G., Diekmann B., Ganzey L.A., Grebennikova T.A., Mokhova L.M., Belyanina N.I. 2020. Holocene environmental changes in North-western Pacific (Kamchatka-Kuril Region). CHIKEI (Nippon Chikeigaku Rengo)/Transactions, Japanese Geomorphological Union, 41–3: 277–293. https://doi.org/10.13140/RG.2.2.31486.10562
35. Demezhko D.Yu., Solomina O.N. 2009. Ground surface temperature change in Kunashir Island Inferred from Borehole Data and Tree-Ring Chronology. Doklady Earth Sciences, 426(1): 628–631. https://doi.org/10.1134/S1028334X09040266
36. Kitagawa H., Matsumoto E. 1995. Climatic implications of ?13C variations in a Japanese cedar (Cryptomeria japonica) during the last two millennia. Geophysical Research Letters, 22: 2155–2158. https://doi.org/10.1029/95gl02066
37. Woodruff J.D., Donnelly J.P., Okusu A. 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Reviews, 28: 1774–1785. https://doi.org/10.1016/j.quascirev.2009.02.005