Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2022, vol. 6, No. 1, pp. 60–73

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2022.6.1.060-073


Pigments in the bottom sediments of Aniva Bay (Sea of Okhotsk)
Tatyana G. Koreneva1, https://orcid.org/0000-0003-1030-3286, t.koreneva@sakhniro.ru
Lyubov E. Sigareva2
https://orcid.org/0000-0003-4894-3262, sigareva@ibiw.ru
1Sakhalin Branch of Russian Federal Research Institute of Fisheries and Oceanography (SakhNIRO), Yuzhno-Sakhalinsk, Russia
2Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (IBIW RAS), Borok, Yaroslavl Region, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. The data of spectrophotometric determination of the content of plant pigments in the bottom sediments of Aniva bay (the Sea of Okhotsk) obtained in autumn 2013 are presented. The content of sedimentary pigments is shown to be quantitatively related to the hydrological characteristics of the water column and the typological indicators of bottom sediments. The content of chlorophyll a with phaeopigments in the sediments of the bay is generally characterized by values of the oligotrophic category. The pigment characteristics of the bottom sediments of the bay are represented by the values of indicators that differ significantly from those of functioning plant organisms due to the strong degradation of the pigment fund. The prevalence of the concentration of phaeopigments over chlorophyll a, an increase in the contribution of additional chlorophylls to their total amount, as well as an increase in total carotenoids compared to chlorophyll a were noted. The ecological interpretation of the data obtained on pigments and pigment ratios gives an idea of the mechanism of interaction between production and destruction processes in water bodies, which gives to the pigment characteristics meaning of integral ecosystem indicators.


Keywords:
Aniva Bay, pigment characteristics, bottom sediments

For citation: Koreneva T.G., Sigareva L.E. Pigments in the bottom sediments of Aniva Bay (Sea of Okhotsk). Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2022, vol. 6, no. 1, pp. 60–73. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2022.6.1.060-073

Äëÿ öèòèðîâàíèÿ: Êîðåíåâà Ò.Ã., Ñèãàðåâà Ë.Å. Ïèãìåíòû â äîííûõ îòëîæåíèÿõ çàë. Àíèâà (Îõîòñêîå ìîðå). Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2022, ò. 6, ¹ 1, ñ. 60–73.
https://doi.org/10.30730/gtrz.2022.6.1.060-073


References

1. Vinberg G.G. 1961. Current state and problems of studying the primary production of water bodies. In: Primary production of seas and inland waters. Minsk: Publ. House of the Ministry of Higher, Secondary and Vocational Education, p. 11–24.

2. Zvalinsky V.I. 2006. Formation of primary production in the sea. Izvestiya TINRO, 147: 276–302.

3. Petrenko D., Pozdnyakov D., Sychov V., Johannessen J., Counillon F. 2013. Satellite-derived multi-year trend in primary production in the Arctic Ocean. International J. of Remote Sensing, 34(11): 3903–3937.

4. Sigareva L.E., Zakonnov V.V., Timofeeva N.A., Kasyanova V.V. 2013. Sediment pigments and silting rate as indicators of the trophic condition of the Rybinsk reservoir. Water Resources, 40(1): 54–60. https://doi.org/10.1134/s0097807813010090

5. Sigareva L.E., Timofeeva N.A. 2014. The phytoplankton role in formation of bottom sediment productivity in a large reservoir in the years with different temperature conditions. In: Phytoplankton: biology, classification and environmental impacts. New York: Nova Sci. Publ. Chapter 6: 161–175.

6. Rauzer-Chernousova D.M. 1930. [On the quantitative distribution of chlorophyll in modern and fossil marine sediments]. Byul. Moskovskogo obshchestva ispytatelei prirody. Otd. geol., 8(3–4): 285–299. (In Russ.).

7. Minkina N.I., Samyshev E.Z., Kopytov Yu.P. 2015. [Long-term changes in pollution level and plankton development in the Bay of Sevastopol]. Sistemy kontrolya okruzhayushchei sredy, 1(21): 82–93. (In Russ.).

8. Chen J., Oseji O., Mitra M. et al. 2016. Phytoplankton pigments in Maryland coastal bay sediments as biomarkers of sources of organic matter to benthic community. J. of Coastal Research, 32(4): 768–775. https://doi.org/10.2112/JCOASTRES-D-14-00223.1

9. Naeher S., Suga H., Ogawa N. et al. 2016. Distributions and compound-specific isotopic signatures of sedimentary chlorins reflect the composition of photoautotrophic communities and their carbon and nitrogen sources in Swiss lakes and the Black Sea. Chemical Geology, 443: 198–209. https://doi.org/10.1016/j.chemgeo.2016.04.029

10. Krajewska M., Rajewska M., Szymczak-Zyla M., Kowalewska G. 2017. Algal pigments in Hornsund (Svalbard) sediments as biomarkers of Arctic productivity and environmental conditions. Polish Polar Research, 38(4): 423–443. https://doi.org/10.1515/popore-2017-0025

11. Gavrina L.Yu., Tskhai Zh.R., Shevchenko G.V. 2005. [Seasonal variability of chlorophyll concentration in the La Perouse Strait according to the satellite and shipboard measurements]. Trudy SakhNIRO = Transactions of the “SakhNIRO”, 7: 156–178. (In Russ.).

12. Propp L.N., Gavrina L.Yu. 2005. [Seasonal variations in nutrient compounds and production characteristics in the waters of Aniva Bay according to the results of expedition studies 2001– 2002]. Trudy SakhNIRO, 7: 111–155. (In Russ.).

13. Lazzari P., Solidoro C., Ibello V. et al. 2012. Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences, 9: 217–233. https://doi:10.5194/bg-9-217-2012

14. Koreneva T.G., Latkovskaya E.M. 2013. Characteristics of water variability in the Aniva Bay in content of phytoplankton pigments. Voda: khimiya i ekologiya, 10: 68–78. (In Russ.).

15. Koreneva T.G., Latkovskaya E.M., Chastikov V.N. 2014. Seasonal changes in the hydrological and hydrochemical characteristics and in the concentration of a-chlorophyll in Aniva Bay in 2005. Voda: khimiya i ekologiya, 4: 33–45. (In Russ.).

16. Zakharkov S.P., Shtraikhert E.A., Shambarova Y.V., Gordeichuk T.N., Shi X. 2016. Measuring chlorophyll a concentrations in the Sea of Japan using probe and flow fluorimeters. Oceanology, 56(3): 444-451. https://doi.org/10.1134/s000143701602020x

17. Koreneva T.G., Sigareva L.E. 2019. The distribution of chlorophyll a in the bottom sediments of Aniva Bay (Sea of Okhotsk). Russian J. of Marine Biology, 45(5): 341–349. https://doi.org/10.1134/s1063074019050067

18. Leonov A.V., Pishchal’nik V.M. 2012. [ Modelling of natural processes in aquatic environment. Fundamentals.]. Yuzhno-Sakhalinsk: SakhGU, 228 p. (In Russ.).

19. Afanasiev V.V. 2020. Morpholithodynamic processes and development of the shores of the contact zone of the subarctic and temperate seas of the North Pacific. Yuzhno-Sakhalinsk: IMGG FEB RAS, 171 p. https://doi:10.30730/978-5-6040621-8-0.2020-1

20. Orlova T.Yu., Selina M.S., Stonik I.V. et al. 2007. [Phytoplankton of coastal waters of the Island of Sakhalin and potentially toxic species of its composition]. In: Reaktsiya morskoi bioty na izmeneniya prirodnoi sredy i klimata [Response of marine organisms to the climate and environment changes]. Vladivostok: Dal’nauka, p. 233–263. (In Russ.).

21. Balkonskaya L.A., Chumakov A.A. 2005. [Current state of Laminaria japonica Aresch in the tradition fishing areas near the Southern Sakhalin coast]. In: Morskie pribrezhnye ekosistemy: vodorosli, bespozvonochnye i produkty ikh pererabotki: Tez. dokl. 2 mezhdunar. nauch-prakt. konf. [Marine coastal ecosystems: algae, invertebrates and products of their processing: Abstracts of 2 Intern. scientific and pract. conf.]. Moscow: VNIRO, p. 13–16. (In Russ.).

22. Evseeva N.V., Repnikova A.R. 2010. [Commercial algae resources of the Sakhalin-Kuril region]. Rybprom: tekhnologii i oborudovanie dlya pererabotki vodnykh bioresursov [Rybprom: technologies and equipment for the processing of water bioresources], 3: 14–21. (In Russ.).

23. Aminina N.M., Vishnevskaya T.I., Galanin D.A., Repnikova A.R., Guruleva O.N. 2014. Description of Saccharina japonica commercial stock in the Aniva Bay (Okhotsk Sea). Izvestiya TINRO = Transactions of the Pacific Research Institute of Fisheries and Oceanography, 178: 116–123. (In Russ.). https://doi.org/10.26428/1606-9919-2014-178-116-123

24. Shchukina G.F., Galanin D.A., Balkonskaya L.A. 2003. [Structure and distribution of the coastal benthos communities of Aniva Bay]. Trudy SakhNIRO, 5: 3–24. (In Russ.).

25. Kiselev I.A. 1959. Qualitative and quantitative composition of phytoplankton and its distribution in the waters near South Sakhalin and the southern Kuril Islands. Research of the Far Eastern Seas, 9: 58–77.

26. Orlova T.Yu., Selina M.S., Stonik I.V. 2004. Species composition of plankton microalgae of the Sea of Okhotsk coast of Sakhalin Island. Russian J. of Marine Biology, 30(2): 96–104.

27. Selina M.S., Stonik I.V., Kantakov G.A., Orlova T.Yu. 2005. Seasonal and interannual variability of the species composition of phytoplankton in the Aniva Bay of the Sea of Okhotsk. Trudy SakhNIRO, 7: 179–196. (In Russ.).

28. Mogil’nikova T.A., Nikulina T.V., Koreneva T.G. et al. 2017. [Phytoplankton and chemical indices of coastal waters of the Southwestern and South Sakhalin (Tatar Strait, Aniva Bay)]. In: Chteniya pamyati Vladimira Yakovlevicha Levanidova [Vladimir Ya. Levanidov’s Biennial Memorial Meetings], 7: 151–167. (In Russ.).

29. Pishchal’nik V.M., Klimov S.M. 1991. [Catalog of deep-water observations carried out in the shelf zone of Sakhalin Island during the 1948–1987 period]. Yuzhno-Sakhalinsk: IMGiG DVO RAN, 166 p. (In Russ.).

30. Sigareva L.E. 2012. [Chlorophyll in bottom sediments of the Volga reservoirs]. M.: Tovarishchestvo nauchnykh izdanii KMK, 217 p. (In Russ.).

31. Lisitsin A.P., Bezrukov P.L. 1960. Classification of sediments of modern marine reservoirs. Geological research in the Far Eastern seas: Tr. of the Institute of Oceanology, 32: 3–14.

32. Lakin G.F. 1990. [Biometry]. Moscow: Vysshaya shkola, 352 p. (In Russ.).

33. Moller W.A.A., Scharf B.W. 1986. The content of chlorophyll in the sediment of the volcanic maar lakes in the Eifel region (Germany) as an indicator for eutrophication. Hydrobiologia, 143: 327–329. https://doi.org/10.1007/bf00026678

34. Sirenko L.A. 1988. [Informational meaning of the chlorophyll index]. Gidrobiologicheskii zhurnal, 24(4): 49–53. (In Russ.).

35. Lorenzen C.J. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography, 12(2): 343–346. https://doi.org/10.4319/lo.1967.12.2.0343

36. Sigareva L.E., Timofeeva N.A., Zakonnov V.V. 2004. [Peculiarities of the distribution of plant pigments in bottom sediments of the Cheboksary reservoir]. Gidrobiologicheskii zhurnal, 40(5): 27–35. (In Russ.).

37. Breton E., Brunet C., Sautour B., Brylinski J.-M. 2000. Annual variations of phytoplankton biomass in the Eastern English Channel: comparison by pigment signatures and microscopic counts. J. of Plankton Research, 22(8): 1423–1440. https://doi.org/10.1093/plankt/22.8.1423

38. Elizarova V.A. 1974. The content of photosynthetic pigments in a unit of phytoplankton biomass. Proceedings of the Institute of Biology of Inland Waters of the USSR Academy of Sciences, 28(31): 46–64.

39. Yacobi Y.Z., Pollingher U., Gonen Y. 1996. HPLC analysis of phytoplankton pigments from Lake Kinneret with special reference to the bloom-forming dinoflagellate Peridiniumgatunense (Dinophyceae) and chlorophyll degradation products. J. Plankton Research, 18(10): 1781–1796.

40. Goericke R., Montoya J.P. 1998. Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigments ratios under nutrient and light limited growth. Marine Ecology Progress Series, 169: 97–112.

41. Gieskes W.W., Kraay G.W., Nontij A. et al. 1988. Monsoonal alteration of a mixed and layered structure in the phytoplankton of the euphotic zone of the Banda Sea (Indonesia): a mathematical analysis of algal pigment fingerprints. Netherlands J. of Sea Research, 22: 123–137.

42. Leavitt P.R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolimnology, 9: 109–127.

43. Margalef R. 1966. Ecological correlations and the relationship between primary productivity and community structure. In: Primary productivity in aquatic environments. Berkeley: Univ. California Press, p. 355–364. https://doi.org/10.1525/9780520318182-026

44. Bul’on V.V. 1978. [Content of phaeopigments in plankton (review)]. Gidrobiologicheskii zhurnal, 14(3): 62–69. (In Russ.).

45. Kureishevich A.V., Sirenko L.A., Medved’ V.A. 1999. [Multi-year dynamics of chlorophyll a content and the features of phytoplankton development in Dneprodzerzhinsk reservoir]. Gidrobiologicheskii zhurnal, 35(2): 49–62. (In Russ.).

46. Sigareva L.E., Timofeeva N.A. 2011. [Interannual dynamics of chlorophyll a content in bottom sediments of the Rybinsk reservoir (Russia)]. Al’gologiya, 21(2): 190–201. (In Russ.).

47. Maryash A.A., Khodorenko N.D., Zvalinsky V.I., Tishchenko P.Ya. 2010. Chlorophyll, humic substances and organic carbon in estuary of the Razdolnaya River during a freeze-up. Vestnik of the FEB RAS, 6: 44–51. (In Russ.).

48. Koreneva T.G., Sigareva L.E., Latkovskaya E.M. 2021. The content of chlorophyll a in the bottom sediments of the shallow lagoon Busse (Sakhalin Island). Russian J. of Marine Biology, 47(5): 299–308. https://doi.org/10.31857/s0134347521050077