Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 4, pp. 389–398

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.4.389-393.394-398


Interrelation of methane distribution with psychro-, meso- and thermophilic
hydrocarbon-oxidizing microorganisms in the bottom sediments of the Kara Sea

Anna L. Ponomareva1, https://orcid.org/0000-0002-4382-9156, ponomareva.al@poi.dvo.ru
Nikita S. Polonik1 https://orcid.org/0000-0002-4726-9459, npol86@mail.ru
Anatoly I. Obzhirov1 https://orcid.org/0000-0002-4031-6419, obzhirov@poi.dvo.ru
Renat B. Shakirov1 https://orcid.org/0000-0003-1202-0351, ren@poi.dvo.ru
Roman A. Grigorov1, grigorov.roman1997@gmail.com
Oliver Schmale2 https://orcid.org/0000-0003-2987-4900, oliver.schmale@io-warnemuende.de
Susan Mau3 https://orcid.org/0000-0003-4186-8159, smau@marum.de
1V.I. Il’ichev Pacific Oceanological Institute, Far East Branch of the RAS, Vladivostok, Russia
2The Leibniz Institute for Baltic Sea Research, Warnemunde, Germany
3University of Bremen, Bremen, Germany
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS&ENG

Abstract. The article presents data on the distribution of bioindicator thermophilic hydrocarbon-oxidizing microorganisms in the surface layer of bottom oil and gas bearing sediments in the Kara Sea and their interrelation with methane content. Cultivated thermophilic microorganisms capable of using oil hydrocarbons as the only carbon source found in the zone of no constant heat flow are indicators of oil and gas deposits. In the work, enrichment cultures of bacteria were created, which were incubated at the different temperatures of +5, +30 and +60 °C. It was found that, the hydrocarbon-oxidizing microbiome is mainly represented by meso- and psychrophilic microorganisms. The stations with the highest methane content were dominated by mesophilic oil-oxidizing microorganisms. Thermophilic bacteria of this trophic type were identified only at one of the studied stations, located in the southern part of the Novozemelskaya Depression.


Keywords:
methane, thermophilic hydrocarbon-oxidizing bacteria, bioindicative microorganisms, sea bottom sediments, Kara Sea

For citation: Ponomareva A.L., Polonik N.S., Obzhirov A.I., Shakirov R.B., Grigorov R.A., Schmale O., Mau S. Interrelation of methane distribution with psychro-, meso- and thermophilic hydrocarbon-oxidizing microorganisms in the bottom sediments of the Kara Sea. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 4, pp. 389–398. (Russ. & Engl.).
https://doi.org/10.30730/gtrz.2021.5.4.389-393.394-398

Для цитирования: Пономарева А.Л., Полоник Н.С., Обжиров А.И., Шакиров Р.Б., Григоров Р.А., Шмале О., Мау С. Взаимосвязь распределения метана и психро-, мезо и термофильных углеводородокисляющих микроорганизмов в донных отложениях в Карском море. Геосистемы переходных зон, 2021, т. 5, № 4, с. 389–398.
https://doi.org/10.30730/gtrz.2021.5.4.389-393.394-398


References

1. Abakumov V.A. (ed.) 1983. [ Guide to methods of hydrobiological analysis of surface waters and bottom sediments]. Leningrad: Gidrometeoizdat, 240 p. (In Russ.).

2. Ananiev V. V. 2010. [Problems and prospects for the development of the resource base of hydrocarbons in the Arctic waters of Russia]. Mineral'nyye resursy Rossii. Ekonomika i upravleniye = Mineral resources of Russia. Economics and Management, 3: 42-47. (In Russ.).

3. Ananiev V.V., Kosenkova N.N. 2010. [Arctic shelf: “resources for the future”]. Neftyanoe khozyaystvo = Oil industry, 12: 16-19. (In Russ.).

4. Verzhbitsky V.E., Kosenkova N.N., Ananiev V.V., Malysheva S.V., Vasiliev V.E., Murzin R.R., Komissarov D.K., Roslov Yu. V. 2012. Geology and hydrocarbon potential of the Kara Sea. Oil and Gas J., 110 (1): 48-54. (In Russ.).

5. Grigorenko Yu.N., Mirchink I.M., Savchenko V.I., Senin B.V., Suprunenko O.I. 2006. [Hydrocarbon potential of the continental shelf of Russia: state and development problems]. Mineral'nyye resursy Rossii. Ekonomika i upravleniye (spetsvypusk) = Mineral resources of Russia. Economics and Management, spec. iss.: [Mineral resources of Russian shelf]. Moscow, p. 14-69. (In Russ.).

6. Egorov N.S. (ed.) 1976. Workshop on Microbiology. Moscow: Publ. House of Moscow State University, 308 p. (In Russ.).

7. Kontorovich A.E., Kontorovich V.A. 2010. [Geology and hydrocarbon resources of the shelves of the Arctic seas of Russia]. In: [ Materials of the joint meeting of the RAS Council for the coordination of the activities of regional branches and regional scientific centers of the RAS and the Scientific Council of the RAS for the study of the Arctic and Antarctic]. URO RAN = UB RAS, p. 59–68. (In Russ.).

8. Lisitsyn A.P., Shevchenko V.P., Vinogradov M.Ye., Severina O.V., Vavilova V.V., Mitskevich I.N. 1994. [Fluxes of sedimentary matter in the Kara Sea and in the estuaries of the Ob and Yenisei]. Okeanologiya = Oceanology, 34(5): 748-758. (In Russ.).

9. Mosharov S.A., Mosharova I.V. 2010. [Comparative analysis of production and microbiological characteristics of the Kara and Chukotka seas]. In: [ Physical, geological and biological studies of oceans and seas]. Moscow: Nauchnyy mir [Scientific world], p. 494-505. (In Russ.).

10. Hubert C., Arnosti C., Bruchert V., Loy A., VandiekenV., Jorgensen B.B. 2010. Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environmental Microbiology, 12(4): 1089-1104. https://doi.org/10.1111/j.1462-2920.2010.02161.x

11. Jaeschke A., Jorgensen S.L., Bernasconi S.M., Pedersen R.B., Thorseth I.H., Fruh-Green G.L. 2012. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge. Geobiology, 10(6): 548-561. https://doi.org/10.1111/gbi.12009

12. Mamaeva E.V., Galach'yants Y.P., Khabudaev K.V., Petrova D.P., Pogodaeva T.V., Khodzher T.B., Zemskaya T.I. 2016. Metagenomic analysis of microbial communities of the sediments of the Kara Sea shelf and the Yenisei Bay. Microbiology, 85(2): 187-198. https://doi.org/10.1134/s0026261716020132

13. McBee R.H., McBee V.H. 1956. The incidence of thermophilic bacteria in arctic soils and waters. J. of Bacteriology, 71(2): 182-185. https://doi.org/10.1128/jb.71.2.182-185.1956

14. de Rezende J.R., Kjeldsen K.U., Jorgensen B.B. 2013. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years. ISME J., 7(1): 72-84. https://doi.org/10.1038/ismej.2012.83

15. Robador A., Muller A.L., Sawicka J.E., Berry D., Hubert C., Loy A., Jorgensen B.B., Bruchert V. 2016. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. ISME J., 10(4): 796-809. https://doi.org/10.1038/ismej.2015.157

16. Steinsbu B.O., Tindall B.J., Torsvik V.L., Thorseth I.H., Daae F.L., Pedersen R.B. 2011. Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Mona vent field on the Arctic Mid-Ocean Ridge. International J. of Systematic and Evolutionary Microbiology, 61(9): 2197-2204. https://doi.org/10.1099/ijs.0.027839-0

17. Suslova M.Yu., Lipko I.A., Mamaeva E.V., Parfenova V.V. 2012. Diversity of cultivable bacteria isolated from the water column and bottom sediments of the Kara Sea shelf. Microbiology, 81(4): 524-31. https://doi.org/10.1134/s0026261712040157