Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, òîì 5, ¹ 4, ñ. 361–377

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.4.361-377


Hydrogeochemical indicators for the exploration and development of hydrocarbon fields: review, analysis and prospects for use on Sakhalin Island
Olga A. Nikitenko, https://orcid.org/0000-0002-0177-2147, nikitenko.olga@list.ru
Valery V. Ershov, https://orcid.org/0000-0003-2289-6103, valery_ershov@mail.ru
Institute of Marine Geology and Geophysics, FEÂ RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. The paper discusses the directions of hydrogeochemical researches used to solve actual problems of the oil and gas industry: assessment of the oil and gas potential of territories, localization of oil and gas trap, prediction of the phase composition of hydrocarbon fields, control the development process of hydrocarbon fields, etc. Based on the literature data, the analysis and systematization of the main hydrogeochemical indicators of groundwater with oil and gas prospecting significance, as well as used already at the stage of development of oil and gas fields, have been carried out. The most efficiency of the application of hydrogeochemical researches in oilfield practice is achieved with the integrated use of various indicators. On the example of researches of the oil and gas potential of Sakhalin Island, it is shown that the hydrogeochemical data of the middle of the 20th century, obtained by outdated chemical analytical methods, cannot always be considered reliable. In this regard, additional researches are required to update the relevant hydrogeochemical data in this region.


Keywords:
groundwater, hydrogeochemical indicators, prediction of oil and gas potential, development of hydrocarbon fields, Sakhalin Island

For citation: Nikitenko O.A., Ershov V.V. Hydrogeochemical indicators for the exploration and development of hydrocarbon fields: review, analysis and prospects for use on Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 4, pp. 361–377. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2021.5.4.361-377

Äëÿ öèòèðîâàíèÿ: Íèêèòåíêî Î.À., Åðøîâ Â.Â. Ãèäðîãåîõèìè÷åñêèå êðèòåðèè ïîèñêà è ðàçðàáîòêè óãëåâîäîðîäíûõ ìåñòîðîæäåíèé: îáçîð, àíàëèç è ïåðñïåêòèâû èñïîëüçîâàíèÿ íà îñòðîâå Ñàõàëèí. Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2021, ò. 5, ¹ 4, ñ. 361–377.
https://doi.org/10.30730/gtrz.2021.5.4.361-377


References

1. Balashova E.Y., Farnosova E.N. 2017. Analysis of the composition and prospects of processing of associated petroleum and stratal waters. Uspekhi v khimii i khimicheskoy tekhnologii = J. Advances in Chemistry and Chemical Technology , 31(5): 76–78. (In Russ.).

2. Bartashevich O.V., Zor’kin L.M., Zubarev S.L., Karus E.V., Lopatin N.V., Mogilevskiy G.A., Petukhov A.V., Stadnik E.V., Starobinets I.S., Stroganov V.A., Yagodkin V.V. 1980. Geokhimicheskie metody poiskov neftyanykh i gazovykh mestorozhdeniy [Geochemical methods of exploration for oil and gas fields ]. Moscow: Nedra, 300 p. (In Russ.).

3. Borovikov I.S. 2008. Funds of oil and gas fields on the territory of the Far Eastern region. Neftegazovaya Geologiya. Teoriya i Praktika = Petroleum Geology – Theoretical and Applied Studies , 3: 1–10. (In Russ.).

4. Vassoevich N.B. 1986. Geokhimiya organicheskogo veshchestva i proiskhozhdenie nefti [Geochemistry of the organic matter and origin of petroleum ]: [Selected proceedings]. Moscow: Nauka, 368 p. (In Russ.).

5. Grigel’ N.M. 1959. Kharakteristika i proiskhozhdenie plastovykh vod neftenosnykh rayonov Severnogo Sakhalina: pril. k otchetu o NIR «Rezul’taty khimicheskogo analiza vod neftenosnykh rayonov Severnogo Sakhalina» [ Characteristic and origin of stratum waters of the oil-bearing areas of the Northern Sakhalin: app. to the report on scientific research “The results of the chemical analysis of the waters of oil-bearing areas of the Northern Sakhalin”]. Okha: Sakh. otd-nie VNIGRI, vol. 2, 77 p. Inv. ¹ 1369f (Fondy IMGiG DVO RAN). (In Russ.).

6. Zharkov R.V., Kozlov D.N., Ershov V.V., Syrbu N.S., Nikitenko O.A., Ustyugov G.V. 2019. Paromay thermal springs of Sakhalin Island: modern state and prospects for use. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(4): 428–437. (In Russ.). doi.org/10.30730/2541-8912.2019.3.4.428-437

7. Zor’kin L.M. 2008. Genesis gases of the underground hydrosphere in connection with prospecting of hydrocarbon accumulations. Geoinformatika = Geoinformation , 1: 45–53. (In Russ.).

8. Zytner Yu.I., Chibisova V.S. 2013. Hydrogeological criteria for petroleum potential forecast (northern areas of Timan-Pechora province). Neftegazovaya Geologiya. Teoriya I Praktika = Petroleum Geology – Theoretical and Applied Studies , 8(3): 1–19. (In Russ.). https://doi.org/10.17353/2070-5379/35_2013

9. Kartsev A.A. 1989. Vody neftyanykh i gazovykh mestorozhdeniy SSSR [Waters of oil and gas fields of the USSR] . Moscow: Nedra, 382 p. (In Russ.).

10. Kartsev A.A., Vagin S.B., Shugrin V.P. 1992. Neftegazovaya geologiya [Petroleum geology] . Moscow: Nedra, 208 p. (In Russ.).

11. Kireeva T.A., Vsevolozhsky V.A. 2013. Contrails sodium bicarbonate-water oil and gas as an indicator of the deeper parts of the geological section. Glubinnaya neft’ = Deep Oil , 1(2): 234–245. (In Russ.).

12. Koshelev A.V., Li G.S., Kataeva M.A. 2014. Operativnyy gidrokhimicheskiy kontrol’ za obvodneniem plastovymi vodami ob”ektov razrabotki Urengoyskogo neftegazokondensatnogo mestorozhdeniya [Operative hydrochemical control over the watering out of the formation waters of the development sites of the Urengoyskoye oil and gas condensate field]. Vesti gazovoy nauki: nauch.-tekhn. sbornik, 3(19): 106–115. (In Russ.).

13. Krasintseva V.V. 1968. [ Hydrogeochemistry of chlorine and bromine ]. Moscow: Nauka, 196 p. (In Russ.).

14. Larichev V.V., Popkov V.I., Popkov I.V. 2020. Hydrochemical appearance of reservoir waters of the Oymasha field. Geologiya, Geografiya i Globalnaya Energiya = Geology, Geography and Global Energy , 2(77): 51–59. (In Russ.).

15. Lehov A.V., Kireeva T.A. 2020. Colmatation of reservoir rocks in the operation of oil fields as a result of cation exchange. Moscow University Geology Bull. , 75(1): 58–66. https://doi.org/10.3103/s0145875220010081

16. Mulyak V.V., Poroshin V.D., Gattenberger Yu.P., Abukova L.A., Leukhina O.I. 2007. [ Hydrogeochemical methods for analysis and control of exploration for oil and gas fields ]. Moscow: GEOS, 245 p. (In Russ.).

17. Novikov D.A. 2017. Hydrogeological conditions for the presence of oil and gas in the western segment of the Yenisei-Khatanga regional trough. Geodinamika i tektonofizika = Geodynamics & Tectonophysics , 8(4): 881–901. (In Russ.). https://doi.org/10.5800/gt-2017-8-4-0322

18. Novikov D.A., Chernykh A.V., Dultsev F.F. 2019. Content of rare-earth elements in groundwaters of Upper Jurassic sediments of the Verkh-Tarsk oil field (Western Siberia). Interexpo GEO-Siberia , 2(1): 141–148. (In Russ.). https://doi.org/10.33764/2618-981x-2019-2-1-141-148

19. Poroshin V.D., Mulyak V.V. 2004. Metody obrabotki i interpretatsii gidrogeokhimicheskikh dannykh pri kontrole razrabotki neftyanykh mestorozhdeniy [The methods for processing and interpreting the hydrogeochemical data by control of exploration for oil fields ]. Moscow: Nedra, 220 p. (In Russ.).

20. Putilina V.S., Galitskaya I.V., Yuganova T.I. 2019. Plume of oil metabolites in groundwater: formation, evolution, and toxicity. Environmental Geoscience , 1: 38–45. (In Russ.). https://doi.org/10.31857/s0869-78092019138-45

21. Serebrennikova O.V. 2008. Geokhimicheskie metody pri poiske i razvedke mestorozhdeniy nefti i gaza [Geochemical methods in the search and exploration of oil and gas fields ]. Khanty-Mansiysk: RITs YuGU, 172 p. (In Russ.).

22. Smirnova T.S. 2012. Microcomponents of stratal water as an indicator for evaluating of local structures of a presence oil and gas the Caspian Sea. Geologiya, Geografiya i Globalnaya Energiya = Geology, Geography and Global Energy , 2(45): 212–221. (In Russ.).

23. Tisso B., Vel’te D. 1981. Obrazovanie i rasprostranenie nefti i gaza [Oil and gas formation and distribution ]. Moscow: Mir, 501 p. (In Russ.).

24. Khanin A.A. 1969. Porody-kollektory nefti i gaza i ikh izuchenie [Petroleum rock reservoirs and their study ]. Moscow: Nedra, 368 p. (In Russ.).

25. Kharakhinov V.V., Astaf’ev D.A., Kalita M.A., Korchagin O.A., Ignatova V.A., Naumova L.A. 2015. [Possibilities of new petroleum fields discovery on the shelves of Sakhalin and Western Kamchatka]. Vesti gazovoy nauki: nauch.-tekhn. sbornik, 2(22): 21–35. (In Russ.).

26. Tsitenko N.D., Evstaf’eva V.I. 1959. Kharakteristika i proiskhozhdenie plastovykh vod neftenosnykh rayonov Severnogo Sakhalina [Characteristic and origin of stratum waters of the oil-bearing areas of the Northern Sakhalin ]: otchet o NIR [report on scientific research]. Okha: Sakh. otd-nie VNIGRI, vol. 1, 309 p. Inv. ¹ 1369f (Fondy IMGiG DVO RAN). (In Russ.).

27. Chakhmachev V.A., Vinogradova T.L. 2003. Geochemical indicators of facies and genetic types of parent organic matter. Geochemistry International , 41(5): 497–502.

28. Akinlua A., Smith R.M. 2010. Subcritical water extraction of trace metals from petroleum source rock. Talanta , 81(4–5): 1346–1349. https://doi.org/10.1016/j.talanta.2010.02.029

29. Akstinat M. 2019. Chemical and physicochemical properties of formation waters of the oil and gas industry. J. of Hydrology , 578: 124011, 14 p. https://doi.org/10.1016/j.jhydrol.2019.124011

30. Boschetti T., Toscani L., Shouakar-Stash O., Iacumin P., Venturelli G., Mucchino C., Frape S.K. 2011. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquatic Geochemistry , 17: 71–108. https://doi/10.1007/s10498-010-9107-y

31. Boschetti T., Angulo B., Cabrera F., Vasquez J., Montero R.L. 2016. Hydrogeochemical characterization of oilfield waters from southeast Maracaibo Basin (Venezuela): Diagenetic effects on chemical and isotopic composition. Marine and Petroleum Geology , 73: 228–248. https://doi.org/10.1016/j.marpetgeo.2016.02.020

32. Bowles M.W., Samarkin V.A., Bowles K.M., Joye S.B. 2011. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation. Geochimica et Cosmochimica Acta , 75(2): 500–519. https://doi/10.1016/j.gca.2010.09.043

33. Chen K.-F., Kao C.-M., Chen C.-W., Surampalli R.Y., Lee M.-S. 2010. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J. of Environmental Sciences , 22(6): 864–871.

34. Chongxi L., Xueming W. 1991. Near surface hydrogeochemical exploration for oil and gas in China. J. of Southeast Asian Earth Sciences , 5(1–4): 313–316. https://doi.org/10.1016/0743-9547(91)90041-U

35. Engle M.A., Doolan C.A., Pitman J.A., Varonka M.S., Chenault J., Orem W.H., McMahon P.B., Jubb A.M. 2020. Origin and geochemistry of formation waters from the lower Eagle Ford Group, Gulf Coast Basin, south central Texas. Chemical Geology , 550: 119754, 12 p. https://doi.org/10.1016/j.chemgeo.2020.119754

36. Grasby S.E., Chen Z., Dewing K. 2012. Formation water geochemistry of the Sverdrup Basin: Implications for hydrocarbon development in the High Arctic. Applied Geochemistry , 27(8): 1623–1632. http://dx.doi.org/10.1016/j.apgeochem.2012.04.001

37. Guo Y., Wen Z., Zhang C., Jakada H. 2020. Contamination and natural attenuation characteristics of petroleum hydrocarbons in a fractured karst aquifer, North China. Environmental Science and Pollution Research , 27: 22780–22794. https://doi.org/10.1007/s11356-020-08723-2

38. Hoffmann A.A., Borrok D.M. 2020. The geochemistry of produced waters from the Tuscaloosa Marine Shale, USA. Applied Geochemistry , 116: 104568, 10 p. https://doi.org/10.1016/j.apgeochem.2020.104568

39. Marić N., Štrbacki J., Mrazovac Kurilić S., Beškoski V.P., Nikić Z., Ignjatović S., Malbašić J. 2019. Hydrochemistry of groundwater contaminated by petroleum hydrocarbons: the impact of biodegradation (Vitanovac, Serbia). Environmental Geochemistry and Health , 42: 1921–193. https://doi.org/10.1007/s10653-019-00462-9

40. Martos-Villa R., Mata M.P., Williams L.B., Nieto F., Rey X.A., Sainz-Diaz C.I. 2020. Evidence of hydrocarbon-rich fluid interaction with clays: Clay mineralogy and boron isotope data from Gulf of Cadiz Mud Volcano sediments. Minerals , 10(8): 1–25. https://doi.org/10.3390/min10080651

41. McMahon P.B., Kulongoski J.T., Vengosh A., Cozzarelli I.M., Landon M.K., Kharaka Y.K., Gillespie J.M., Davis T.A. 2018. Regional patterns in the geochemistry of oil-field water, southern San Joaquin Valley, California, USA. Applied Geochemistry , 98: 127–140. https://doi.org/10.1016/j.apgeochem.2018.09.015

42. Köster M.H., Williams L.B., Kudejova P., Gilg H.A. 2019. The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits. Chemical Geology , 510(2): 166–187. https://doi.org/10.1016/j.chemgeo.2018.12.035

43. Nye C.W., Quillinan S., Neupane G., McLing T. 2017. Aqueous rare earth element patterns and concentration in thermal brines associated with oil and gas production. In: Forty Second Workshop on Geothermal Reservoir Engineering, 13–15 February 2017, Stanford, California, USA. New York: Curran Assoc., Inc., 11 p.

44. Özdemir A. 2018. Iodine-rich waters of Turkey and oil & gas potential of the onshore. J. of Sustainable Engineering Applications and Technological Developments , 1(2): 103–150.

45. Rachinsky M.Z., Kerimov V.Y. 2015. Fluid dynamics of oil and gas reservoirs. Hoboken, New Jersey: John Wiley & Sons; Salem, Massachusetts: Scrivener Publ. LLC, 613 p. https://doi.org/10.1002/9781118999004

46. Serres-Piole C., Preud’homme H., Moradi-Tehrani N., Allanic C., Jullia H., Lobinski R. 2012. Water tracers in oilfield applications: Guidelines. J. of Petroleum Science and Engineering , 98–99: 22–39. https://doi:10.1016/j.petrol.2012.08.009

47. Sun Z., Xie X. 2014. Nationwide oil and gas geochemical exploration program in China. J. of Geochemical Exploration , 139: 201–206. http://dx.doi.org/10.1016/j.gexplo.2013.09.004

48. Williams L.B., Hervig R.L., Holloway J.R., Hutcheon I. 2001à. Boron isotope geochemistry during diagenesis. Pt I. Experimental determination of fractionation during illitization of smectite. Geochimica et Cosmochimica Acta , 65(11): 1769–1782. https://doi.org/10.1016/S0016-7037(01)00557-9

49. Williams L.B., Hervig R.L., Wieser M.E., Hutcheon I. 2001b. The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin, USA. Chemical Geology , 174(4): 445–461. https://doi.org/10.1016/S0009-2541(00)00289-8

50. Winniford W., Dunkle M.N. 2020. Tracers for oil and gas reservoirs. In: Analytical Techniques in the Oil and Gas Industry for Environmental Monitoring . New York: John Wiley & Sons. 329–345.

51. Worden R.H. 1996. Controls on halogen concentrations in sedimentary formation waters. Mineralogical Magazine , 60(399): 259–274. https://doi.org/10.1180/minmag.1996.060.399.02

52. Yu H., Wang Z., Rezaee R., Zhang Y., Nwidee L.N., Liu X., Verrall M., Stefan I. 2020. Formation water geochemistry for carbonate reservoirs in Ordos basin, China: Implications for hydrocarbon preservation by machine learning. J. of Petroleum Science and Engineering , 185: 106673. https://doi.org/10.1016/j.petrol.2019.106673