Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 4, pp. 339–345

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.4.339-345


3D modeling of the hydroisostasy effect with a configuration of Moho surface of the Sea of Okhotsk close to real
Rustam F. Bulgakov, https://orcid.org/0000-0001-9095-3785, r.bulgakov@imgg.ru
Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS

Abstract. Interrelation between global sea level changes during Glacial–Interglacial periods and Earth surface deformations is studied using digital simulation methods. During Earth surface deformations, the deformation amplitude is expected to depend on variable thickness of the upper lithospheric layer. 3D modeling allows to take into account thickness variation of the lithospheric layer. In this work, 3D modeling of hydroisostasy under marine transgression similar to Interglacial ones for the Sea of Okhotsk has been made with creating a mesh on the base close to real bathimetry of the Sea of Okhotsk and Moho surface configuration. Simulation has been done by finite element method by Elmer software suite. As a result, relation between Moho surface configuration and Earth surface deformation was found.


Keywords:
postglacial transgression, mantle viscosity, hydroisostasy, vertical movements, Elmer, finite element method

For citation: Bulgakov R.F. 3D modeling of the hydroisostasy effect with a configuration of Moho surface of the Sea of Okhotsk close to real. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 4, pp. 339–345. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2021.5.4.339-345

Для цитирования: Булгаков Р.Ф. 3D-моделирование эффекта гидроизостазии с близкой к реальной конфигурацией поверхности Мохо для Охотского моря. Геосистемы переходных зон, 2021, т. 5, № 4, с. 339–345.
https://doi.org/10.30730/gtrz.2021.5.4.339-345


References

1. Bulgakov R.F. 2021. Digital simulation trial of hydroisostasy by finite element method. Geoinformatika , 2: 26–32. (In Russ.). doi:10.47148/1609-364X-2021-2-26-32

2. Bulgakov R.F., Senachin V.N. 2019. Marine terraces and hydroisostasy influence on the vertical movements of the Sakhalin. Geosistemy perehodnykh zon = Geosystems of Transition Zones , 3(3): 277–286. (In Russ.). doi.org/10.30730/2541-8912.2019.3.3.277-286

3. Bulgakov R.F., Afanas’ev V.V., Ignatov E.I. 2020. Effect of hydroisostasy on postglacial transgression on the shelf and coast of Primorye as revealed by computer modelling. Geosistemy perehodnykh zon = Geosystems of Transition Zones , 4(2): 210–219. (In Russ.). https://doi.org/10.30730/gtrz.2020.4.2.210-219.220-229

4. Senachin V.N., Veselov O.V., Semakin V.P., Kochergin E.V. 2013. Digital model of the earth’s crust of the Okhotsk Sea region. Geoinformatika , 4: 33–44. (In Russ.).

5. Bartholet A., Milne G.A., Latychev K. 2021. Modelling sea-level fingerprints of glaciated regions with low mantle viscosity. Earth System Dynamics , 12: 783–795. https://doi.org/10.5194/esd-12-783-2021

6. Clark J.A., Lingle C.S. 1979. Predicted relative sea-level changes (18,000 years b.p. to Present) caused by late-glacial retreat of the Antarctic ice sheet. Quaternary Research , 11(3): 279–298. https://doi.org/10.1016/0033-5894(79)90076-0

7. Farrel W.E., Clark J.A. 1976. On postglacial sea level. Geophysical J. of the Royal Astronomical Society , 46(3): 647–667. https://doi.org/10.1111/j.1365-246x.1976.tb01252.x

8. Peltier W.R. 1974. The impulse response of Maxwell Earth. Reviews of Geophysics and Space Physics , 12(4): 649–669. https://doi.org/10.1029/rg012i004p00649

9. Steffen H., Kaufmann G., Wu P. 2006. Three-dimensional finite-element modeling of the glacial isostatic adjusment in Fennoscandia. Earth and Planetary Science Letters , 250(1–2): 358–375. doi:10.1016/j.epsl.2006.08.003