Geosistemy perehodnykh zon = Geosystems of Transition Zones / Ãåîñèñòåìû ïåðåõîäíûõ çîí
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 3, pp. 255–274

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.3.255-274


Pliocene adakite-like accent of andesites and dacites from the Orlov volcanic field (Sakhalin Island)
Sergei V. Rasskazov1,2, https://orcid.org/0000-0001-9084-1652, rassk@crust.irk.ru
Alexander V. Rybin3, https://orcid.org/0000-0002-7734-0172, a.rybin@imgg.ru
Artem V. Degterev3, https://orcid.org/0000-0001-8291-2289, d_a88@mail.ru
Irina S. Chuvashova1,2, https://orcid.org/0000-0002-1582-4753, chuvashova@crust.irk.ru
Tatyana A. Yasnygina1, https://orcid.org/0000-0003-1696-5539, ty@crust.irk.ru
Elena V. Saranina1,4, https://orcid.org/0000-0002-1842-1239, e_v_sar@mail.ru
1Institute of the Earth’s Crust, SB RAS, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
3Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
3A.P. Vinogradov Institute of Geochemistry, SB RAS, Irkutsk, Russia
Abstract PDF ENG Ðåçþìå PDF RUS Full text PDF RUS

Abstract. Adakite-like geochemical signature (high Sr/Y ratio at a low Y concentration) is recognized in andesites and dacites, associated with intraplate basalts in the Orlov volcanic field of Sakhalin Island. These rocks denote the final (Pliocene) accent of intraplate volcanism in the Lesogorsk zone, which began in the Middle Miocene in an area of its junction with the Chekhov zone of the preceded (Oligocene-Early Miocene) suprasubduction one. The adakite-like accent was related to the Sakhalin folding phase that accompanied the general structural reorganization in the back-side region in the Japan arc system. Such a geological environment differed from the one of classical adakites generation resulted from melting of a young slab in the Aleutian island arc. It is supposed, that the Sakhalin adakite-like magmas were produced in deep-seated sources of the crust-mantle transition displayed in the Sakhalin-Hokkaido-Japan Sea zone of hot transtension due to drastic change of tectonic deformations from the thin crust of the South Tatar Basin to the thicker one of its northeastern extremity.


Keywords:
adakite, Cenozoic, subduction, intraplate volcanism, slab melting, Sakhalin

For citation: Rasskazov S.V., Rybin A.V., Degterev A.V., Chuvashova I.S., Yasnygina T.A., Saranina E.V. Pliocene adakite-like accent of andesites and dacites from the Orlov volcanic field (Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones, vol. 5, no. 3, pp. 255–274. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2021.5.3.255-274

Äëÿ öèòèðîâàíèÿ: Ðàññêàçîâ Ñ.Â., Ðûáèí À.Â., Äåãòåðåâ À.Â., ×óâàøîâà È.Ñ., ßñíûãèíà Ò.À., Ñàðàíèíà Å.Â. Ïëèîöåíîâûé àäàêèòîïîäîáíûé àêöåíò àíäåçèòîâ è äàöèòîâ íà Îðëîâñêîì âóëêàíè÷åñêîì ïîëå (î. Ñàõàëèí). Ãåîñèñòåìû ïåðåõîäíûõ çîí, 2021, ò. 5, ¹ 3, ñ. 255–274.
https://doi.org/10.30730/gtrz.2021.5.3.255-274


References

1. Avdeiko G.P., Bergal-Kuvikas O.V. 2015 . The geodynamic conditions for the generation of adakites and Nb-rich basalts (NEAB)) in Kamchatka. J. of Volcanology and Seismology , 9(5): 295–306. https://doi.org/10.1134/s0742046315050024

2. Avdeiko G.P., Paluyeva A.A., Bergal-Kuvikas O.V. 2011 . Adakites in subduction zones of the Pacific Ring: Review and analysis of geodynamic genesis conditions. Vestnik KRAUNTs. Nauki o Zemle = Bull. of KRAESC. Earth Sciences , 1(17): 45–60. (In Russ.).

3. Gordienko V.V., Andreev A.A., Bikkenina S.K. et al. 1992 . [ Tectonosphere of Asia-Pacific margin ]. Vladivostok: DVO RAN, 238 p. (In Russ.).

4. Grannik V.M. 2017 . Late Cenozoic igneous rocks of the Krilion Peninsular (Sakhalin Island). Geosistemy perehodnykh zon = Geosystems of Transition Zones , 1(4): 3–20. (In Russ.). doi.org/10.30730/2541-8912.2017.1.4.003-020

5. Grannik V.M., Rasskazov S.V., Golozubov V.V., Chuvashova I.S. 2017 . On the origin of the Late Cenozoic igneous rocks of the Lamanon knot (Sakhalin Island). Vestnik DVO RAN = Vestnik of the FEB RAS , 1: 62–67. (In Russ.).

6. Zhidkova A.S., Shilov V.N. 1969 . [On the age and nature of occurrence of the products of the third phase of Cenozoic volcanism within the Lamanon massif (Sakhalin Island)]. In: [ Geological structure of Sakhalin Island ]. Yuzhno-Sakhalinsk, p. 141–154. (Trudy SakhKNII, 21). (In Russ.).

7. Mel’nikov O.A. 1987 . [ Structure and geodynamics of Hokkaido-Sakhalin folded area ]. Moscow: Nauka, 95 p. (In Russ.).

8. Rasskazov S.V., Logachev N.A., Kozhevnikov V.M., Yanovskaya T.B. 2003 . Multistage dynamics of the upper mantle in Eastern Asia: Relationships between wandering volcanism and low-velocity anomalies. Doklady Earth Sciences , 390(4): 492–496.

9. Rasskazov S.V., Melnikov O.A., Rybin A.V., Guryanov V.B., Yasnygina T.A., Brandt I.S., Brandt S.B., Saranina E.V., Maslovskaya M.N., Fefelov N.N., Zharov A.E. 2003 . The spatial change of deep sources of Cenozoic volcanic rocks on the western coast of South Sakhalin. Tikhookeanskaya Geologiya , 24(2): 10–32. (In Russ.).

10. Rasskazov S.V., Chuvashova I.S., Yasnygina T.A., Fefelov N.N., Saranina E.V. 2012 . [ Potassium and potassium sodium volcanic series in the Cenozoic of Asia ]. Novosibirsk: GEO, 351 p. (In Russ.).

11. Rasskazov S.V., Yasnygina T.A., Chuvashova I.S. 2014 . Mantle sources of the cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sublithospheric convection, and the lithosphere. Russian Journal of Pacific Geology , 8(5): 360–378.

12. Semenov D.F. 1975 . [ Neogene magmatic formations of Southern Sakhalin ]. Khabarovsk: Khabarovsk Publ., 208 p. (In Russ.).

13. Sizykh Yu.I. 1985 . [ Complex scheme of the chemical analysis of rock and mineral samples ]. Irkutsk: Institut zemnoy kory SO AN SSSR, 56 p. (In Russ.).

14. Shilo N.A., Kosygin Yu.A. (eds). 1982 . Karta vulkano-tektonicheskikh struktur pribrezhno-materikovoy chasti Dal’nego Vostoka SSSR [Map of volcanic and tectonic structures of the mainland coastline part of the USSR Far East ]. [Scale] 1:1500000. Ministerstvo geologii SSSR; Dal’nevostochnyy nauchnyy tsentr AN SSSR et al. (In Russ.).

15. Yasnygina T.A., Rasskazov S.V., Markova M.E., Ivanov A.V., Demonterova E.I. 2003 . [Determination of trace elements in the mafic–intermediate volcanic rocks by ICP-MS using microwave acid decomposition]. In: (Burenkov E.K., Kremenetskiy A.A., eds) Prikladnaya geokhimiya. Iss. 4. Analiticheskie issledovaniya. Moscow: IMGRE, p. 48–56. (In Russ.).

16. Aguillon-Robles A., Calmus T., Benoit M., Bellon M.H., Maury R.C., Cotten J., Bourgois J., Michaud F. 2001 . Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern California? Geology , 29(6): 531–534. https://doi.org/10.1130/0091-7613(2001)029<0531:lmaane>2.0.co;2

17. Cai Z., Qiu R., Xiong X. 2004 . Geochemical characteristics and geological significance of the adakites from west Tibet. Himalayan J. of Sciences , 2(4) (Special issue): 291. https://doi.org/10.3126/hjs.v2i4.958

18. Castillo P.R. 2006 . An overview of adakite petrogenesis. Chinese Science Bull. , 51(3): 1–12. https://doi.org/10.1007/s11434-006-0257-7

19. Castillo P.R. 2012 . Adakite petrogenesis. Lithos , 134–135: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013

20. Castillo P.R., Janney P.E., Solidum R.U. 1999 . Petrology and geochemistry of Caminguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology , 134: 33–51. https://doi.org/10.1007/s004100050467

21. Chung S.L., Liu D., Ji J., Chu M.F., Lee H.Y., Wen D.J., Lo C.H., Lee T.Y., Qian Q., Zhang Q. 2003 . Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology , 31: 1021–1024. https://doi.org/10.1130/g19796.1

22. Defant M.J., Drummond M.S. 1990 . Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature , 347: 662–665. https://doi.org/10.1038/347662a0

23. Defant M.J., Drummond M.S. 1993 . Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology , 21: 547–550. https://doi.org/10.1130/0091-7613(1993)021<0547:mshpeo>2.3.co;2

24. Defant M.J., Jackson T.E., Drummond M.S., de Boer J.Z., Bellon H., Feigenson M.D., Maury R.C., Stewart R.H. 1992 . The geochemistry of young volcanism throughout western Panama and southern Costa Rica, an overview. J. of the Geological Society (J. Geol. Soc. London), 149(4): 569–579. https://doi.org/10.1144/gsjgs.149.4.0569

25. Grove T.L., Baker M.B., Price R.C., Parman S.W., Elkins-Tanton L.T., Chatterjee N., Muntener O. 2005 . Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contributions to Mineralogy and Petrology , 148: 542–565. https://doi.org/10.1007/s00410-004-0619-6

26. Gudmundsson O., Sambridge M. 1998 . A regionalized upper mantle (RUM) seismic model. J. of Geophysical Research: Solid Earth , 104: 28803–28812. https://doi.org/10.1029/97jb02488

27. Guo F., Nakamuru E., Fan W., Kobayoshi K., Li C. 2007 . Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. J. of Petrology , 48(4): 661–692. doi:10.1093/petrology/egl077

28. Guo Z.H., Wilson M., Liu J. 2007 . Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96: 205–224. https://doi.org/10.1016/j.lithos.2006.09.011

29. Gutscher M.A., Spakman W., Bijwaard H., Engdahl E.R. 2000 . Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics , 19(5): 814–833. https://doi.org/10.1029/1999tc001152

30. Hart S.R., Gaetani G.A. 2006 . Mantle Pb paradoxes: The sulfide solution. Contributions to Mineralogy and Petrology , 152: 295–308. https://doi.org/10.1007/s00410-006-0108-1

31. Hou Z.Q., Mo X.X., Gao Y.F. 2003 . Adakite, a possible host rock for porphyry copper deposits: case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile. Mineral Deposits , 1(22): 1–12.

32. Jiang X-Y., Deng J-H., Luo J-C., Zhang L-P., Luo Z-B., Yan H-B., Sun W-D. 2020 . Petrogenesis of Early Cretaceous adakites in Tongguanshan Cu–Au polymetallic deposit, Tongling region, Eastern China. Ore Geology Reviews, 126: 103717. doi.org/10.1016/j.oregeorev.2020.103717

33. Jolivet L., Tamaki K., Fournier M. 1994 . Japan Sea opening history and mechanism: A synthesis. J. of Geophysical Research: Solid Earth, 99(B11): 22237–22259. https://doi.org/10.1029/93jb03463

34. Karsli O., Dokuz A., Kandemir R., Aydin F., Schmitt A.K., Ersoy E.Y., Aly?ld?z C. 2019 . Adakite-like parental melt generation by partial fusion of juvenile lower crust, Sakarya Zone, NE Turkey: A far-field response to break-off of the southern Neotethyan oceanic lithosphere. Lithos, 338–339: 58–72. https://doi.org/10.1016/j.lithos.2019.03.029

35. Kay R.W., Kay S.M. 1993 . Delamination and delamination magmatism. Tectonophysics , 219: 177–189. https://doi.org/10.1016/0040-1951(93)90295-u

36. Kepezhinskas P., Defant M.J., Drummond M.S. 1996 . Progressive enrichement of island arc mantle by melt-periodotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217–1229. https://doi.org/10.1016/0016-7037(96)00001-4

37. Lagabrielle Y., Guivel C., Maury R.C., Bourgois J., Fourcade S., Martin H. 2000 . Magmatic-tectonic effects of high-thermal regime at the site of active ridge subduction: the Chile Triple Junction model. Tectonophysics , 326(3–4): 255–268. https://doi.org/10.1016/s0040-1951(00)00124-4

38. Le Bas M.J., Streckeisen A.L. 1991 . The IUGS systematics of igneous rocks. J. of the Geological Society (J. Geol. Soc. London) , 148: 825–833. https://doi.org/10.1144/gsjgs.148.5.0825

39. Liu J., Chaoming Xie C., Li C., Fan J., Wang M., Wang W., Yu Y, Dong Y., Hao Y. 2019 . Origins and tectonic implications of Late Cretaceous adakite and primitive high-Mg andesite in the Songdo area, southern Lhasa subterrane, Tibet. Gondwana Research , 76: 185–203. doi.org/10.1016/j.gr.2019.06.014

40. McDonough W.F., Sun S.-S. 1995 . The composition of the Earth. Chemical Geology , 120: 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

41. Menzies M.A., Kyle P.R., Jones M., Ingram G. 1991 . Enriched and depleted source components for tholeiitic and alkaline lavas from Zuni-Bandera, New Mexico: Inferences about intraplate processes and stratified lithosphere. J. of Geophysical Research: Solid Earth , 96B: 13645–13671. https://doi.org/10.1029/91jb02684

42. Morris P.A. 1995 . Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology , 23: 395–398. https://doi.org/10.1130/0091-7613(1995)023<0395:smaaeo>2.3.co;2

43. Ohki J., Shuto K., Kagami H. 1994 . Middle Miocene bimodal magmatism by asthenospheric upwelling: Sr and Nd isotopic evidence from the back-arc region of the Northeast Japan arc. Geochemical J., 28(6): 473– 487. https://doi.org/10.2343/geochemj.28.473

44. Otofuji Y.-I. 1996 . Large tectonic movement of the Japan Arc in late Cenozoic times inferred from paleomagnetism: review and synthesis. The Island Arc , 5: 229–249. https://doi.org/10.1111/j.1440-1738.1996.tb00029.x

45. Peacock S.M., Rushmer T., Thompson A.B. 1994 . Partial melting of subduction oceanic crust. Earth and Planetary Science Letters , 121: 227–244. https://doi.org/10.1016/0012-821x(94)90042-6

46. Petford N., Atherton M.P. 1996 . Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. of Petrology , 37: 1491–521. https://doi.org/10.1093/petrology/37.6.1491

47. Petrone C.M., Ferrari L. 2008 . Quaternary adakite – Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence? Contributions to Mineralogy and Petrology , 156: 73–86. https://doi.org/10.1007/s00410-007-0274-9

48. Pouclet A., Lee J-S., Vidal P. et al. 1995 . Cretaceous to Cenozoic volcanism in South Korea and in the Sea of Japan: magmatic constraints on the opening of the back-arc basin. In: J.L. Smellie (ed.). Volcanism associated with extension at consuming plate margins , p. 169–191. ( Geological Society, London, Special Publications, 81). https://doi.org/10.1144/gsl.sp.1994.081.01.10

49. Qu X.M., Hou Z.Q., Li Y.G. 2002 . Implications of S and Pb isotopic compositions of the Gangdise porphyry copper. Geological bull. of China , 21(11): 768–776.

50. Rasskazov S., Chuvashova I., Yasnygina T., Saranina E. 2020 . Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks. Minerals , 10(9): 739. doi:10.3390/min10090739

51. Rogers N.W., Hawkesworth C.J., Ormerod D.S. 1995 . Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. J. of Geophysical Research: Solid Earth , 100B(7): 10287–10301. https://doi.org/10.1029/94jb02738

52. Sajona F.G., Maury R.C., Bellon H., Cotton J., Defant M.J., Pubellier M. 1993 . Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology , 21: 1007–1110. https://doi.org/10.1130/0091-7613(1993)021<1007:iosatg>2.3.co;2

53. Sato H. 1994 . The relationship between late Cenozoic tectonic events and stress field and basin development in northeast Japan. J. of Geophysical Research: Solid Earth , 99: 22261–22274. https://doi.org/10.1029/94jb00854

54. Shimazu M., Furuyama K., Kawano Y., Okamura S., Ohira H., Yamamoto G. 1992 . K–Ar ages, major element compositions and Sr, Nd isotope ratios of volcanic rocks from the western hart of south Sakhalin, USSR. J. of Mineralogy, Petrology and Economic Geology , 87: 50–61. https://doi.org/10.2465/ganko.87.50

55. Shuto K., Ohki J., Kagami H. et al. 1993 . The relationships between drastic changes in Sr isotope ratios of magma sources beneath the NE Japan arc and the spreading of the Japan Sea back-arc basin. Mineralogy and Petrology , 49: 71–90. https://doi.org/10.1007/bf01162927

56. Tatsumi Y., Koyaguchi T. 1989 . An absarokite from a phlogopite lherzolite source. Contributions to Mineralogy and Petrology , 102: 34–40. https://doi.org/10.1007/bf01160189

57. Wang Q., Hao L., Zhang X., Zhou J., Wang J., Li Q., Ma L., Zhang L., Qi Y., Tang G., Dan W., Fan J. 2020 . Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. Science China Earth Sciences , 63(12): 1992–2016. https://doi.org/10.1007/s11430-020-9678-y

58. Yanovskaya T.B., Kozhevnikov V.M. 2003 . 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data. Physics of the Earth and Planetary Interiors , 138: 263–278. https://doi.org/10.1016/s0031-9201(03)00154-7

59. Yogodzinski G.M., Kay R.W., Volynets O.N., Koloskov A.V., Seliverstov N.I., Matvenkov V.V. 1994 . Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, far western Aleutians. J. Petrology , 35: 163–204. https://doi.org/10.1093/petrology/35.1.163