Geosistemy perehodnykh zon = Geosystems of Transition Zones /
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 2, pp. 153166

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.2.153-166


Study of fractured reservoirs during geological exploration in the north-eastern part of the Sakhalin Island
Yuri V. KOSTROV1, yvkostrov@snipi.rosneft.ru
Vladislav A. DEGTYAREV1, 2, https://orcid.org/0000-0001-8922-3654, degtyarevvladislav96@yandex

Anton V. MARININ3, https://orcid.org/0000-0002-1099-6492, marinin@yandex.ru
Eduard K. KHMARIN1, ekkhmarin@snipi.rosneft.ru
Pavel A. KAMENEV2, https://orcid.org/0000-0002-9934-5855, p.kamenev@imgg.ru
1LLC RN-SakhalinNIPImorneft, Yuzhno-Sakhalinsk, Russia
2Institute of Marine Geology and Geophysics, FEB RAS, Yuzhno-Sakhalinsk, Russia
3Schmidt Institute of Physics of the Earth, RAS, Moscow, Russia
Abstract PDF ENG PDF RUS Full text PDF RUS

Abstract. During a geological fieldworks in the northeast of Sakhalin Island in order to study the siliceous deposits of the Pilskaya formation and to develop a technique for locating oil deposits in unconventional fractured reservoirs, natural outcrops of Cenozoic deposits on the Schmidt Peninsula and in the Pogranichny depression were studied. Samples were taken for analytical studies (geomechanical, geochemical, lithological, etc.), structural forms (folds, minor faults, slickensides, tension gashes, joints, shear fractures), which are indicators of tectonic deformations of the rock massive, were studied. It is shown that the intensity of fracturing strongly depends on the lithology, the position of the observation point relative to disjunctive and/or plicative structures. The direction of the joints varies depending on the position relative to the elements of the local folds and on the position of the block (with a small-block structure). According to the results of field observations it is shown, that the zone of intense dislocations has an extremely insignificant thickness usually the first tens of meters. An extremely nonuniformity of the stress field in the vicinity of the Pogranichniy depression is noted, which is reflected in the nature of the dipping planes, structural patterns and parageneses. In the northern part of the syncline, numerous flowing oil shows associated with open fracturing are identified, which obviously indicates the extension regime that continues up to this day.


Keywords:
unconventional reservoirs, siliceous deposits, tectonic stress, deformations, slickensides, fracturing, geological fieldwork, Sakhalin Island

For citation: Kostrov Yu.V., Degtyarev V.A., Marinin A.V., Khmarin E.K., Kamenev P.A. Study of fractured reservoirs during geological exploration in the north-eastern part of the Sakhalin Island. Geosistemy perehodnykh zon = Geosystems of Transition Zones, vol. 5, no. 2, pp. 153166. (In Russ., abstr. in Engl.).
https://doi.org/10.30730/gtrz.2021.5.2.153-166

: .., .., .., .., .. - . . , 2021, . 5, 2, . 153166.
https://doi.org/10.30730/gtrz.2021.5.2.153-166


References

1. Voeykova O.A., Nesmeyanov S.A., Serebryakova L.I. 2007. Neotektonika i aktivnye razlomy Sakhalina [Neotectonics and active faults of Sakhalin ]. Moscow: Nauka, 187 p. (In Russ.).

2. Galversen V.G., Evseev S.V., Konovalenko A.A., Khaybullina G.A. (comp.) 2016. [State geological map of Russian Federation on a scale of 1:200 000. Sakhalin series. Sheet M-54-XVIII (Pogranichnoe) ]: [Explanatory note. Second edition]. Moscow: Moskovskiy filial FGBU VSEGEI, 187 p. [Recommend for print by Rosnedra Scientific editorial board, December 1, 2009]. (In Russ.).

3. Geology of USSR. Vol. 33. Sakhalin Island. Geological description (ed. V.N. Vereshchagin). 1970. Moscow: Nedra, 432 p.

4. Gladenkov Yu.B., Bazhenova O.K., Grechin V.I., Margulis L.S., Salnikov B.A. 2002. [The Cenozoic of Sakhalin and its petroleum potential ]. Moscow: GEOS, 225 p. (In Russ.).

5. Dymovich V.A., Evseev S.V., Evseev V.F. et al. (comp.) 2016. [State geological map of Russian Federation on a scale of 1:1 000 000. State geological map of Russian Federation on a scale of 1:1 000 000. Third generation. Far East series. Sheet M-54 (Aleksandrovsk-Sakhalinskiy) ]: [Explanatory note]. Saint Petersburg: Kartograficheskaya fabrika VSEGEI, 599 p. (In Russ.). https://www.vsegei.ru/ru/info/pub_ggk1000-3/Dalnevostochnaya/m-54.php

6. Zhirov D.V. 2019. [Information capacity of jointing for applied aspects of geology and mining industry: geometry and structure of cracks]. In: Yu.A. Morozov (ed.) [Russian tectonophysics. For the centenary of Mikhail V. Gzovskii ]: [coll. Of articles]. Apatity: FITs KNTs RAN, 294328. (In Russ.).

7. Zyabrev S.V. 2011. Stratigraphy and structure of the central East Sakhalin accretionary wedge (Eastern Russia). Russian J. of Pacific Geology , 5(4): 313335.

8. Kamenev P.A., Degtyarev V.A., Kostrov Yu.V., Marinin A.V., Bondar I.V., Gordeev N.A., Khaliulin R.R., Khmarin E.K., Levin A.V. 2021. Study of fractured reservoirs in Northern Sakhalin as part of a comprehensive expedition in 2020. Vestnik DVO RAN, 2: 114122. (In Russ.). doi:10.37102/0869-7698_2021_216_02_12

9. Kirmasov A.B. 2011. [Fundamentals of structural analysis ]. Moscow: Nauchnyy mir, 368 p.

10. Kozhurin A.I., Lobodenko I.Yu., Strom A.L. 2009. [Evidence of strong earthquakes on the Schmidt Peninsula northern part of Sakhalin Island in the Holocene]. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy [Geology, geophysics and development of oil and gas fields ], 4: 2329. (In Russ.).

11. Konovalenko A.A., Vasyuk I.B., Kostrov Yu.V. et al. 2009. [State geological map of Russian Federation on a scale of 1:200 000. Sakhalin series. Sheet N-54-XXIV (Vostochnyy) ]: [Explanatory note]. Saint Petersburg, 91 p. (In Russ.).

12. Konovalov A.V., Nagornykh T.V., Safonov D.A. 2014. Sovremennye issledovaniya ochagov zemletryaseniy o. Sakhalin i mekhanizmov ikh vozniknoveniya [Modern studies of earthquake sources mechanisms of Sakhalin Island ]. Vladivostok: Dalnauka, 252 p. (In Russ.).

13. Oparin V.N., Vostrikov V.I., Usoltseva O.M., Tsoy P.A., Semenov V.N. 2015. [Integrated analysis of characteristics of physical fields under effect of fluid fracturing. Laboratory experiment]. Interekspo Geo-Sibir, 2(3): 173178. (In Russ.).

14. Rastsvetaev L.M. 1987. [Paragenetic method of structural analysis of disjunctive tectonic faults]. In: Problemy strukturnoy geologii i fiziki tektonicheskikh protsessov [Problems of structural geology and physics of tectonic processes ]. Moscow: GIN AN SSSR, 173235. (In Russ.).

15. Rebetskiy Yu.L. 2007. Tektonicheskie napryazheniya i prochnost prirodnykh massivov [Tectonic stresses and strength of natural massifs ]. Moscow: Akademkniga, 406 p. (In Russ.).

16. Rebetskiy Yu.L., Sim L.A., Marinin A.V. 2017. Ot zerkal skolzheniya k tektonicheskim napryazheniyam. Metody i algoritmy [From slickensides to tectonic stresses. Methods and algorithms ]. Moscow: GEOS, 234 p. (In Russ.).

17. Rozhdestvenskiy V.S. 1975. [Strike-slip faults in Northeastern Sakhalin]. Geotektonika [Geotectonics], 2: 8597. (In Russ.).

18. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A. 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics, 8(1): 181202. (In Russ.). https://doi.org/10.5800/GT-2017-8-1-0237

19. Tyutrin I.I., Dunichev V.M. 1985. Tektonika i neftegazonosnost severo-zapadnoy chasti Tikhookeanskogo poyasa [Tectonics and petroleum potential of the northwestern part of the Pacific belt ]. Moscow: Nedra, 174 p. (In Russ.).

20. Kharakhinov V.V. 2010. [Petroleum geology of the Sakhalin region ]. Moscow: Nauchnyy mir, 276 p. (In Russ.).

21. Ekosistemy kaynozoya Okhotomorskogo regiona. Opornyy razrez paleogena i neogena Severnogo Sakhalina (p-ov Shmidta): stratigrafiya, paleogeografiya i geologicheskie sobytiya [Cenozoic ecosystems of the Sea of Okhotsk region. The Paleogene and Neogene reference section of North Sakhalin (the Schmidt Peninsula): stratigraphy, paleogeography, and geological events ] (Ed. Yu.B. Gladenkov). 1999. Moscow: GEOS, 132 p. (In Russ.).

22. Llanos E.M., Jeffrey R.G., Hillis R., Zhang Xi. 2017. Hydraulic fracture propagation through an orthogonal discontinuity: A laboratory, analytical and numerical study. Rock Mechanics and Rock Engineering , 50: 21012118. doi:10.1007/s00603-017-1213-3

23. Gale J.F., Laubach S.E., Olson J.E., Eichhubl P., Fall A. 2014. Natural fractures in shale: A review and new observations. AAPG (Am. Assoc. Pet. Geol.) Bull., 98(11): 21652216. https://doi.org/10.1306/08121413151

24. Wang H.Yi. 2019. Hydraulic fracture propagation in naturally fractured reservoirs: Complex fracture or fracture networks. J. of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2019.102911

25. Heidbach O., Rajabi M. X. Cui K., Fuchs K., Muller B., Reinecker J., Reiter Tingay K.M., Wenzel F., Xie F., Ziegler M.O., Zoback M.L., Zoback M.D. 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744: 484498. https://doi.org/10.1016/j.tecto.2018.07.007

26. Polets A.Yu. 2019. The stress state of the Sakhalin Island and adjacent territories. IOP Conf. Series: Earth and Environmental Science, 324, 012010. https://doi.org/10.1088/1755-1315/324/1/012010