Geosistemy perehodnykh zon = Geosystems of Transition Zones / Геосистемы переходных зон
Content is available under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

2021, vol. 5, No. 2, pp. 84–112

URL: http://journal.imgg.ru/archive.html, https://elibrary.ru/title_about.asp?id=64191, https://doi.org/10.30730/gtrz.2021.5.2.084-098.099-112


Precedent-extrapolation estimate of the seismic hazard in the Sakhalin and the Southern Kurils region
Aleksandr I. Malyshev*, https://orcid.org/0000-0002-4306-8000, malyshev@igg.uran.ru
Lidiia K. Malysheva, https://orcid.org/0000-0002-2784-2182, malysheva@igg.uran.ru

The Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Abstract PDF ENG Резюме PDF RUS Full text PDF RUS&ENG

Abstract. The paper describes the algorithm and the results of the seismic hazard estimate in the Sakhalin and Southern Kurils region based on the data of the Japan Regional Catalogue (JMA). A nonlinear differential equation of the second order is used as a mathematical model, and algorithms for optimization and predictability estimation are presented by the author's solutions. The forecasting algorithm is based on the search for seismic activity zones in which the current activity trends correspond to foreshock sequences recorded before strong earthquakes (precedents) that have already occurred. The earthquake time is calculated with extrapolating the detected trends to the level of activity that occurred at the time of the precedent earthquake. By the example of precedent foreshock sequences in Japan, it is shown that the lead time of such a forecast reaches 10–15 years and its implementation is due to the preservation and stability of the identified trends. A map of potentially dangerous zones for Sakhalin and the Kuril Islands and some examples of calculating the time of strong earthquakes according to the JMA catalogue as of August 31, 2018 are presented. Action sequence in identifying the potentially dangerous trends in seismic activity and the specifics of possible use of the technique in the Sakhalin region are considered.


Keywords:
earthquake, seismic energy, foreshock, рrecedent-extrapolation estimate of the seismic hazard

For citation: Malyshev A.I., Malysheva L.K. Precedent-extrapolation estimate of the seismic hazard in the Sakhalin and the Southern Kurils region. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2021, vol. 5, no. 2, pp. 84–112. (In Russ. & Engl.).
https://doi.org/10.30730/gtrz.2021.5.2.084-098.099-112

Для цитирования: Малышев А.И., Малышева Л.К. Прецедентно-экстраполяционная оценка сейсмической опасности в районе Сахалина и Южных Курил. Геосистемы переходных зон, 2021, т. 5, № 2, с. 84–112.
https://doi.org/10.30730/gtrz.2021.5.2.084-098.099-112


References

1. Bogoyavlensky V.I., Bogoyavlensky I.V. 2018. Problems of the Netherlands gas production: record-breaking seismic activity at the Groningen field. Gas Industry, 4 (767): 126–135. (In Russ.).

2. Fokina T.A., Safonov D.A., Kostylev D.V., Mikhaylov V.I. 2020. Sakhalin. Zemletriaseniia Severnoi` Evrazii = [Earthquakes of the Northern Eurasia ], 23 (2014): 152–161. (In Russ.). https://doi.org/10.35540/1818-6254.2020.23.14

3. Foulger G.R., Wilson M.P., Gluyas J.G., Julian B.R., Davies R.J. 2018. Global review of human-induced earthquakes. Earth-Science Reviews , 178: 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008

4. Gupta H.K., Rastogi B.K. 1979. Dams and earthquakes. Moscow: Mir Publ., 251 p. Transl. from Engl.: Gupta H.K., Rastogi B.K. 1976. Dams and earthquakes. Amsterdam: Elsevier.

5. Kanamori H. 1977. The energy release in great earthquakes. J. of Geophysical Research , 82(20): 2981–2987. https://doi.org/10.1029/jb082i020p02981

6. [Earthquake catalogue of the south of Sakhalin Island from 2000 to 2010 (according to data of the autonomous digital seismic stations) ]. 2011. Authors: Kim Ch.U., Semenova E.P., Zherdeva O.A. et al. Vladivostok: Dal’nauka, 357 p.

7. Malyshev A.I. 1991. Dynamics of self-developing processes. Volcanology & Seismology , 4: 61–72. (In Russ.).

8. Malyshev A.I. 2017(2016). Estimating the predictability of the seismicity rate: The 1964 eruption of Shiveluch Volcano. J. of Volcanology and Seismology , 10(6): 347–359. https://doi.org/10.1134/S0742046316060051

9. Malyshev A.I. 2019a. The predictability of seismicity and large earthquakes: Kamchatka 1962 to 2014. J. of Volcanology and Seismology, 13(1): 42–55. https://doi.org/10.31857/s0205-96142019152-66

10. Malyshev A.I. 2019b. Predictability of the rate of seismic energy in North America. Izv. Physics of the Solid Earth, 55(6): 864–878. https://doi.org/10.1134/S106935131906003X

11. Malyshev A.I. 2020. Predictability of the seismic energy flux: Southern Europe and the Mediterranean. J. of Volcanology and Seismology, 14(1): 30–43. https://doi.org/10.1134/S0742046320010030

12. Malyshev A.I., Malysheva L.K. 2018. Predictability of seismic energy rate in northwest frame of Pacific Ocean on the base of USGS catalogue. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 2(3): 141–153. (In Russ.). https://doi.org/10.30730/2541-8912.2018.2.3.141-153

13. Malyshev A.I., Malysheva L.K. 2019. [Statistical analysis of the seismic energy flux forecasting]. In: Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii: Trudy Sed’moy nauchno-tekhnicheskoy konf., 29 sent. – 5 okt. 2019, Petropavlovsk-Kamchatskiy [Problems of complex geophysical monitoring of the Russian Far East: Proceedings of the seventh scientific and technical conference, September 29 – October 5, 2019, Petropavlovsk-Kamchatskiy ]. Obninsk: FITs EGS RAN, 307–311. (In Russ.).

14. Regional catalogue of Sakhalin Island earthquakes, 1905–2005. Poplavskaya L.N. (ed.) 2006. Yuzhno-Sakhalinsk: IMGiG DVO RAN, 103 p. (In Russ.).

15. Semenova E.P., Boginskaya N.V., Kostylev D.V. 2020. Uglegorsk earthquake on September 13, 2020 (Sakhalin Island): preconditions for the occurrence and the results of observations in the epicentral zone. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 4(4): 474–485. (In Russ.). https://doi.org/10.30730/gtrz.2020.4.4.474-485

16. Thienen-Visser K., Sijacic D., Nepveu M., Wees J., Hettelaar J. 2015. Response of induced seismicity to production changes in the Groningen field. TNO Report 2015 R11367. 56 p. URL: https://www.nlog.nl/sites/default/files/tno%202015%20r11367_final_tno_report_nov%202015.pdf

17. Tikhonov I.N. 2010. Induced seismicity in the vicinity of Piltun-Astokh gas and oil field on Sakhalin island shelf. Vestnik DVO RAN = Vestnik of the FEB RAS, 3: 59–63. (In Russ.).

18. Tikhonov I.N., Mikhaylov V.I., Malyshev A.I. 2017. Modeling the Southern Sakhalin earthquake sequences preceding strong shocks for short-term prediction of their origin time. Russian J. of Pacific Geology , 11(1): 1–10. https://doi.org/10.1134/s1819714017010092

19. Zakupin A.S., Boginskaya N.V. 2020. Mid-term assessments of seismic hazards on Sakhalin Island using the LURR method: new results. Geosistemy perehodnykh zon = Geosystems of Transition Zones , 4(2): 160–177. (In Russ & Engl.). https://doi.org/10.30730/gtrz.2020.4.2.160-168.169-177

20. Zakupin A.S., Semenova E.P. 2018. Study of the process of preparation of strong earthquakes (Mw > 5) on Sakhalin using the LURR method. Vestnik KRAUNTs. Fiz.-mat. nauki = Bull. KRASEC. Physical and Mathematical Sciences , 5: 83–98. (In Russ.). https://doi.org/10.18454/2079-6641-2018-25-5-83-98

21. Zakupin A.S., Levin Yu.N., Boginskaya N.V., Zherdeva O.A. 2018. Development of medium-term prediction methods: A case study of the August 14, 2016 Onor (M = 5.8) earthquake on Sakhalin. Russian Geology and Geophysics , 59(11): 1526–1532. https://doi.org/10.1016/j.rgg.2018.10.012

22. Zakupin A.S., Boginskaya N.V., Andreeva M.Yu. 2019. Methodological aspects of the study of seismic sequences by SDP (self-developing processes) on the example of the Nevel’sk earthquake on Sakhalin. Geosistemy perehodnykh zon = Geosystems of Transition Zones, 3(4): 377–389. (In Russ.). https://doi.org/10.30730/2541-8912.2019.3.4.377-389